PPl

The Parma Polyhedra Library
User’s Manual*
(version 1.0)

Roberto Bagnaraf
Patricia M. Hill*
Enea Zaffanella?

Abramo Bagnara?’

June 28, 2012

*This work is based on previous work also by Elisa Ricci, Sara Bonini, Andrea Pescetti, Angela Stazzone, Tatiana Zolo. This
work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Mathematics™;
MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation, Type Sys-
tems and Control-Flow Analysis”’; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from Decision
Algorithms to Constraint Programming with Multisets, Sets, and Maps”’; MURST project “Constraint Based Verification of Reactive
Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for Software
Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy, and BUGSENG srl.

*patricia.hill@bugseng.com, BUGSENG srl.

§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy, and BUGSENG srl.

9abramo.bagnara@bugseng.com, BUGSENG stl.

Copyright © 2001-2010 Roberto Bagnara (bagnara@cs.unipr.it)
Copyright © 2010-2012 BUGSENG srl (http://bugseng.com)

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

If you have not received a copy of one or both the above mentioned licenses along with the PPL, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library site:

http://bugseng.com/products/ppl/

hugteng

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.fsf.org
http://www.fsf.org
http://bugseng.com/products/ppl/
http://bugseng.com

CONTENTS

Contents

1 General Information on the PPL

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

The Main Features e
Upward Approximationo
Approximating Integers L.
Convex Polyhedra e
Representations of Convex Polyhedra
Operations on Convex Polyhedra
Intervalsand Boxes
Weakly-Relational Shapes L
Rational Grids e
Operations on Rational Grids
The Powerset Construction ottt
Operations on the Powerset Construction
The Pointset Powerset Domain L 0.
Analysis of floating point computationso
Usingthe Library o
Bibliography

2 GNU General Public License

3 GNU Free Documentation License

4 Module Index

4.1

Modules e e e

5 Namespace Index

5.1

Namespace List o e

6 Class Index

6.1

Class Hierarchy e

7 Class Index

7.1

Class List e e

8 Module Documentation

8.1

C++ Language Interface

9 Namespace Documentation

9.1
9.2
9.3

Parma_Polyhedra_Library Namespace Reference
Parma_Polyhedra_Library::10_Operators Namespace Reference
std Namespace Reference

10 Class Documentation

10.1
10.2

10.3
10.4
10.5
10.6
10.7

10.8

Parma_Polyhedra_Library:: Approximable_Reference Class Reference
Parma_Polyhedra_Library:: Approximable_Reference_Common< Target > Class Tem-
plate Reference
Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class Reference . . .
Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference
Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference
Parma_Polyhedra_Library::Binary_Operator Class Reference
Parma_Polyhedra_Library::Binary_Operator_Common< Target > Class Template Ref-
CICTICE . & & v v v v e e e e e e e e e e e e e
Parma_Polyhedra_Library::Box< ITV > Class Template Reference

41

50

55
55

56
56

56
56

59
60

65
65

84
84
93
94

95
95

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

ii

CONTENTS

10.9
10.10

10.11
10.12

10.13
10.14
10.15
10.16
10.17
10.18
10.19

10.20
10.21
10.22
10.23

10.24
10.25

10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38

10.39
10.40

10.41

10.42

10.43
10.44

10.45

10.46

10.47

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Format > Class Template Reference

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Reference
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
erence
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Reference
Parma_Polyhedra_Library::

P_Format > Class Template Reference

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

FP_Format > Class Template Reference

Parma_Polyhedra_Library::

P_Format > Class Template Reference

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
erence
Parma_Polyhedra_Library::
erence
Parma_Polyhedra_Library::
plate Reference
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
plate Reference
Parma_Polyhedra_Library::

> Class Template Reference

Parma_Polyhedra_Library::
erence
Parma_Polyhedra_Library::

C_Polyhedron Class Reference 168
Cast_Floating_Point_Expression< FP_Interval_Type, FP_-
............................ 174
Cast_Operator Class Reference 176
Cast_Operator_Common< Target > Class Template Refer-
................................. 177
Checked_Number< T, Policy > Class Template Reference . 177
:BHRZ03_Certificate::Compare Struct Reference 194
:H79_Certificate::Compare Struct Reference 194
:Grid_Certificate::Compare Struct Reference 195
:Variable::Compare Struct Reference 195
Concrete_Expression Class Reference 195
Concrete_Expression_Common< Target > Class Template
................................. 202
:Concrete_Expression_Type Class Reference 202
:Congruence Class Reference 204
Congruence_System Class Reference 212
Congruences_Reduction< D1, D2 > Class Template Refer-
................................. 217
:CO_Tree::const_iterator Class Reference 219
:Linear_Expression_Impl< Row >::const_iterator Class Ref-
................................. 222
Linear_Expression::const_iterator Class Reference 224
Congruence_System::const_iterator Class Reference 226
:MIP_Problem::const_iterator Class Reference 227
:Grid_Generator_System::const_iterator Class Reference . . 228
:Linear_Expression_Interface::const_iterator_interface Class
................................. 229
Constant_Floating_Point_Expression< FP_Interval_Type, F-
.......................... 231
Constraint Class Reference 234
Constraint_System Class Reference 245
Constraint_System_const_iterator Class Reference 248

Constraints_Reduction< D1, D2 > Class Template Reference 249

Determinate<< PSET > Class Template Reference 250
Difference_Floating_Point_Expression< FP_Interval_Type,
.......................... 252
Division_Floating_Point_Expression< FP_Interval_Type, F-
.......................... 256
Domain_Product< D1, D2 > Class Template Reference . . 259

Implementation::Watchdog::Doubly_Linked_Object Class Ref-

................................. 259
Implementation::Watchdog::EList< T > Class Template Ref-
................................. 260
Implementation::Watchdog::EList_Iterator< T > Class Tem-
................................. 262
Floating_Point_Constant Class Reference 263
Floating_Point_Constant_Common< Target > Class Tem-
................................. 263
Floating_Point_Expression< FP_Interval_Type, FP_Format
................................ 264
FP_Oracle< Target, FP_Interval_Type > Class Template Ref-
................................. 269
Generator Class Reference 271

740

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

CONTENTS

iii

10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55
10.56
10.57

10.58

10.59
10.60

10.61
10.62
10.63
10.64
10.65
10.66

10.67
10.68
10.69
10.70
10.71

10.72

10.73

10.74

10.75
10.76
10.77
10.78
10.79
10.80
10.81
10.82
10.83
10.84
10.85

10.86
10.87

10.88
10.89
10.90
10.91

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

> Class Template Reference

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
erence
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

P_Format > Class Template Reference

Parma_Polyhedra_Library:
Reference
Parma_Polyhedra_Library::
Class Template Reference

Parma_Polyhedra_Library::
Template Reference
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::

Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library:
Reference
Parma_Polyhedra_Library:
Parma_Polyhedra_Library::

Format > Class Template Reference

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Generator_System Class Reference 286
Generator_System_const_iterator Class Reference 290
:GMP_Integer Class Reference 291
:Grid Class Reference 294
:Grid_Certificate Class Reference 325
:Grid_Generator Class Reference 326
Grid_Generator_System Class Reference 336
:H79_Certificate Class Reference 340
:Implementation:: Watchdog::Handler Class Reference 341
:Implementation::Watchdog::Handler_Flag< Flag_Base, Flag
................................ 342
Implementation::Watchdog::Handler_Function Class Refer-
................................. 344
Integer_Constant Class Reference 344
:Integer_Constant_Common< Target > Class Template Ref-
................................. 345
Interval < Boundary, Info > Class Template Reference . . . 345
CO_Tree::iterator Class Reference 349
:Linear_Expression Class Reference 352
:Linear_Form< C > Class Template Reference 367
:MIP_Problem Class Reference 378

:Multiplication_Floating_Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference

.......................... 386
NNC_Polyhedron Class Reference 390
PIP_Solution_Node::No_Constraints Struct Reference 395
No_Reduction< D1, D2 > Class Template Reference 396
Octagonal_Shape< T > Class Template Reference 396
Opposite_Floating_Point_Expression< FP_Interval_Type, F-

.......................... 431
:Partially_Reduced_Product< D1, D2, R > Class Template
................................. 434
Implementation::Watchdog::Pending_Element< Threshold >
................................. 460
Implementation::Watchdog::Pending_List< Traits > Class
................................. 462
:PIP_Decision_Node Class Reference 463
:PIP_Problem Class Reference 464
:PIP_Solution_Node Class Reference 476
PIP_Tree_Node Class Reference 479
Pointset_Powerset< PSET > Class Template Reference 484
:Poly_Con_Relation Class Reference 510
:Poly_Gen_Relation Class Reference 512
:Polyhedron Class Reference 513
Powerset< D > Class Template Reference 547
Recycle_Input Struct Reference 554
:Shape_Preserving_Reduction< D1, D2 > Class Template
................................. 554
:Smash_Reduction< D1, D2 > Class Template Reference . . 555
Sum_Floating_Point_Expression< FP_Interval_Type, FP_-

............................ 556
Threshold_Watcher< Traits > Class Template Reference . . 559
Throwable Class Reference 559
Implementation::Watchdog::Time Class Reference 560
Unary_Operator Class Reference 561

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

iv CONTENTS
10.92 Parma_Polyhedra_Library::Unary_Operator_Common< Target > Class Template Ref-

EIENCE . & v v v o e e e e e e e e e 561

10.93 Parma_Polyhedra_Library::Variable Class Reference 561
10.94 Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, F-

P_Format > Class Template Reference 564

10.95 Parma_Polyhedra_Library::Variables_Set Class Reference 567

10.96 Parma_Polyhedra_Library::Watchdog Class Reference 568

z! The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1 General Information on the PPL 1

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in some n-dimensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (Section Convex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itis user friendly: you write x + 2%y + 5%z <= 7 when you mean it;

* itis fully dynamic: available virtual memory is the only limitation to the dimension of anything;

* it provides full support for the manipulation of convex polyhedra that are not topologically closed;
* it is written in standard C++: meant to be portable;

* it is exception-safe: never leaks resources or leaves invalid object fragments around;

* it is rather efficient: and we hope to make it even more so;

¢ it is thoroughly documented: perhaps not literate programming but close enough;

* it has interfaces to other programming languages: including C, Java, OCaml and a number of Prolog
systems;

e it is free software: distributed under the terms of the GNU General Public License.

In the following section we describe all the domains available to the PPL user. More detailed descriptions
of these domains and the operations provided will be found in subsequent sections.

In the final section of this chapter (Section Using the Library), we provide some additional advice on the
use of the library.

1.1.1 Semantic Geometric Descriptors

A semantic geometric descriptor is a subset of R™. The PPL provides several classes of semantic GDs.
These are identified by their C++ class name, together with the class template parameters, if any. These
classes include the simple classes:

e C_Polyhedron,

* NNC_Polyhedron,

* BD_Shape<T>,

* Octagonal_Shape<T>,

* Box<ITV>,and

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

2 CONTENTS

e Grid,
where:

e T is a numeric type chosen among mpz_class, mpqg_class, signed char, short, int,
long, long long (or any of the C99 exact width integer equivalents int 8_t, intl6_t, and so
forth); and

e ITVis an instance of the Interval template class.

Other semantic GDs, the compound classes, can be constructed (also recursively) from all the GDs classes.
These include:

e Pointset_Powerset<PSET>,

e Partially_ Reduced_Product<Dl, D2, R>,

where PSET, D1 and D2 can be any semantic GD classes and R is the reduction operation to be applied to
the component domains of the product class.

A uniform set of operations is provided for creating, testing and maintaining each of the semantic GDs.
However, as many of these depend on one or more syntactic GDs, we first describe the syntactic GDs.

1.1.2 Syntactic Geometric Descriptors

A syntactic geometric descriptor is for defining, modifying and inspecting a semantic GD. There are three
kinds of syntactic GDs: basic GDs, constraint GDs and generator GDs. Some of these are generic and
some specific. A generic syntactic GD can be used (in the appropriate context) with any semantic GD;
clearly, different semantic GDs will usually provide different levels of support for the different subclasses
of generic GDs. In contrast, the use of a specific GD may be restricted to apply to a given subset of the
semantic GDs (i.e., some semantic GDs provide no support at all for them).

1.1.2.1 Basic Geometric Descriptors
The following basic GDs currently supported by the PPL are:
* space dimension;
¢ variable and variable set;
¢ coefficient;
* linear expression;

* relation symbol,;

* vector point.

These classes, which are all generic syntactic GDs, are used to build the constraint and generator GDs as
well as support many generic operations on the semantic GDs.

1.1.2.2 Constraint Geometric Descriptors

The PPL currently supports the following classes of generic constraint GDs:

e linear constraint;

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.1 The Main Features 3

* linear congruence.

Each linear constraint can be further classified to belong to one or more of the following syntactic subclasses-

* inconsistent constraints (e.g., 0 > 2);

* tautological constraints (e.g., 0 < 2);

* interval constraints (e.g., x < 2);

* bounded-difference constraints (e.g., x — y < 2);

* octagonal constraints (e.g., z + y < 2);

¢ linear equality constraints (e.g., z = 2);

* non-strict linear inequality constraints (e.g., x — 3y < 2);

* strict linear inequality constraints (e.g., z — 3y < 2).

Note that the subclasses are not disjoint.

Similarly, each linear congruence can be classified to belong to one or more of the following syntactic
subclasses:

* inconsistent congruences (e.g., 0 =3 1);
* tautological congruences (e.g., 0 =5 2);
* linear equality, i.e., non-proper congruences (e.g., = + 3y =¢ 0);

* proper congruences (e.g., * + 3y =5 0).

The library also supports systems, i.e., finite collections, of either linear constraints or linear congruences
(but see the note below).

Each semantic GD provides optimal support for some of the subclasses of generic syntactic GDs listed
above: here, the word "optimal" means that the considered semantic GD computes the best upward ap-
proximation of the exact meaning of the linear constraint or congruence. When a semantic GD operation
is applied to a syntactic GD that is not optimally supported, it will either indicate its unsuitability (e.g., by
throwing an exception) or it will apply an upward approximation semantics (possibly not the best one).

For instance, the semantic GD of topologically closed convex polyhedra provides optimal support for
non-strict linear inequality and equality constraints, but it does not provide optimal support for strict in-
equalities. Some of its operations (e.g., add_constraint and add_congruence) will throw an
exception if supplied with a non-trivial strict inequality constraint or a proper congruence; some other
operations (e.g., refine_with_constraint or refine_with_congruence) will compute an
over-approximation.

Similarly, the semantic GD of rational boxes (i.e., multi-dimensional intervals) having integral values as
interval boundaries provides optimal support for all interval constraints: even though the interval constraint
2z < 5 cannot be represented exactly, it will be optimally approximated by the constraint x < 3.

Note

When providing an upward approximation for a constraint or congruence, we consider it in isolation:
in particular, the approximation of each element of a system of GDs is independent from the other
elements; also, the approximation is independent from the current value of the semantic GD.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

4 CONTENTS

1.1.2.3 Generator Geometric Descriptors

The PPL currently supports two classes of generator GDs:

* polyhedra generator: these are polyhedra points, rays and lines;

* grid generator: these are grid points, parameters and lines.

Rays, lines and parameters are specific of the mentioned semantic GDs and, therefore, they cannot be used
by other semantic GDs. In contrast, as already mentioned above, points are basic geometric descriptors
since they are also used in generic PPL operations.

1.1.3 Generic Operations on Semantic Geometric Descriptors

1. Constructors of a universe or empty semantic GD with the given space dimension.
2. Operations on a semantic GD that do not depend on the syntactic GDs.

¢ is_empty(),is_universe(),is_topologically_closed(),is_discrete(),
is_bounded (), contains_integer_point ()
test for the named properties of the semantic GD.

e total_memory_in_bytes (), external_memory_in_bytes ()
return the total and external memory size in bytes.

* OK()
checks that the semantic GD has a valid internal representation. (Some GDs provide this
method with an optional Boolean argument that, when true, requires to also check for non-
emptiness.)

* space_dimension(),affine_dimension ()
return, respectively, the space and affine dimensions of the GD.

* add_space_dimensions_and_embed(),add_space_dimensions_and_project (),
expand_space_dimension (), remove_space_dimensions (), fold_space_-
dimensions (), map_space_dimensions ()
modify the space dimensions of the semantic GD; where, depending on the operation, the
arguments can include the number of space dimensions to be added or removed a variable or
set of variables denoting the actual dimensions to be used and a partial function defining a
mapping between the dimensions.

e contains (), strictly_contains(),is_disjoint_from()
compare the semantic GD with an argument semantic GD of the same class.

* topological_closure_assign (), intersection_assign (), upper_bound-
_assign(),difference_assign(),time_elapse_assign(),widening_assign{(),
concatenate_assign (), m_swap ()
modify the semantic GD, possibly with an argument semantic GD of the same class.

e constrains (), bounds_from_above (), bounds_from_below(),maximize (),
minimize ().

These find information about the bounds of the semantic GD where the argument variable or
linear expression define the direction of the bound.

e affine_image(),affine_preimage (),generalized_affine_image (),generalized-
_affine_preimage (),bounded_affine_image (),bounded_affine_preimage ().
These perform several variations of the affine image and preimage operations where, depending
on the operation, the arguments can include a variable representing the space dimension to
which the transformation will be applied and linear expressions with possibly a relation symbol
and denominator value that define the exact form of the transformation.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.1 The Main Features 5

* ascii_load(),ascii_dump ()
are the ascii input and output operations.

3. Constructors of a semantic GD of one class from a semantic GD of any other class. These con-
structors obey an upward approximation semantics, meaning that the constructed semantic GD is
guaranteed to contain all the points of the source semantic GD, but possibly more. Some of these
constructors provide a complexity parameter with which the application can control the complex-
ity/precision trade-off for the construction operation: by using the complexity parameter, it is pos-
sible to keep the construction operation in the polynomial or the simplex worst-case complexity
class, possibly incurring into a further upward approximation if the precise constructor is based on
an algorithm having exponential complexity.

4. Constructors of a semantic GD from a constraint GD; either a linear constraint system or a linear
congruence system. These constructors assume that the given semantic GD provides optimal support
for the argument syntactic GD: if that is not the case, an invalid argument exception is thrown.

5. Other interaction between the semantic GDs and constraint GDs.

e add_constraint (),add_constraints(),add_recycled_constraints(),add-
_congruence (), add_congruences (), add_recycled_congruences ().
These methods assume that the given semantic GD provides optimal support for the argument
syntactic GD: if that is not the case, an invalid argument exception is thrown.
Foradd_recycled_constraints () and add_recycled_congruences (), the only
assumption that can be made on the constraint GD after return (successful or exceptional) is
that it can be safely destroyed.

e refine_with_constraint (), refine_with_constraints (), refine_with-
_congruence (), refine_with_ congruences().
If the argument constraint GD is optimally supported by the semantic GD, the methods behave
the same as the corresponding add_* methods listed above. Otherwise the constraint GD is
used only to a limited extent to refine the semantic GD; possibly not at all. Notice that, while
repeating an add operation is pointless, this is not true for the refine operations. For example,
in those cases where

Semantic_GD.add_constraint (c)

raises an exception, a fragment of the form

Semantic_GD.refine_with_constraint (c)

// Other add_constraint(s) or refine_with_constraint (s) operations
// on Semantic_GD.

Semantic_GD.refine_with_constraint (c)

may give more precise results than a single

Semantic_GD.refine_with_constraint (c) .
// Other add_constraint(s) or refine_with_constraint (s) operations
// on Semantic_GD.
e constraints (), minimized_constraints (), congruences (), minimized -
congruences ().

Returns the indicated system of constraint GDs satisfied by the semantic GD.

* can_recycle_constraint_systems(),can_recycle_congruence_systems ().
Return true if and only if the semantic GD can recycle the indicated constraint GD.

e relation_with ().
This takes a constraint GD as an argument and returns the relations holding between the seman-
tic GD and the constraint GD. The possible relations are: IS_INCLUDED (), SATURATES (),
STRICTLY_INTERSECTS (), IS_DISJOINT () and NOTHING (). This operator also can
take a polyhedron generator GD as an argument and returns the relation SUBSUMES () or
NOTHING () that holds between the generator GD and the semantic GD.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

6 CONTENTS

1.2 Upward Approximation

The Parma Polyhedra Library, for those cases where an exact result cannot be computed within the specified
complexity limits, computes an upward approximation of the exact result. For semantic GDs this means
that the computed result is a possibly strict superset of the set of points of R™ that constitutes the exact
result. Notice that the PPL does not provide direct support to compute downward approximations (i.-
e., possibly strict subsets of the exact results). While downward approximations can often be computed
from upward ones, the required algorithms and the conditions upon which they are correct are outside
the current scope of the PPL. Beware, in particular, of the following possible pitfall: the library provides
methods to compute upward approximations of set-theoretic difference, which is antitone in its second
argument. Applying a difference method to a second argument that is not an exact representation or a
downward approximation of reality, would yield a result that, of course, is not an upward approximation
of reality. It is the responsibility of the library user to provide the PPL’s method with approximations of
reality that are consistent with respect to the desired results.

1.3 Approximating Integers

The Parma Polyhedra Library provides support for approximating integer computations using the geometric
descriptors it provides. In this section we briefly explain these facilities.

1.3.1 Dropping Non-Integer Points

When a geometric descriptor is used to approximate integer quantities, all the points with non-integral
coordinates represent an imprecision of the description. Of course, removing all these points may be
impossible (because of convexity) or too expensive. The PPL provides the operator drop_some_non_ -
integer_points to possibly tighten a descriptor by dropping some points with non-integer coordinates,
using algorithms whose complexity is bounded by a parameter. The set of dimensions that represent integer
quantities can be optionally specified. It is worth to stress the role of some in the operator name: in general
no optimality guarantee is provided.

1.3.2 Approximating Bounded Integers

The Parma Polyhedra Library provides services that allow to compute correct approximations of bounded
arithmetic as available in widespread programming languages. Supported bit-widths are 8, 16, 32 and
64 bits, with some limited support for 128 bits. Supported representations are binary unsigned and two’s
complement signed. Supported overflow behaviors are:

Wrapping: this means that, for a w-bit bounded integer, the computation happens modulo 2. In turn,
this signifies that the computation happens as if the unbounded arithmetic result was computed and
then wrapped. For unsigned integers, the wrapping function is simply mod 2", most conveniently
defined as

wrapy, () ety ow |x/2%].

For signed integers the wrapping function is, instead,

wrapl (), if wrapl (z) < 2w~1;

wrapl, (z) — 2%, otherwise.

wrap;, (z) < {

Undefined: this means that the result of the operation resulting in an overflow can take any value. This
is useful to partially model systems where overflow has unspecified effects on the computed result.

Even though something more serious can happen in the system being analyzed —due to, e.g., C’s

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.4 Convex Polyhedra 7

undefined behavior—, here we are only concerned with the results of arithmetic operations. It is the
responsibility of the analyzer to ensure that other manifestations of undefined behavior are conser-
vatively approximated.

Impossible: this is for the analysis of languages where overflow is trapped before it affects the state, for
which, thus, any indication that an overflow may have affected the state is necessarily due to the
imprecision of the analysis.

1.3.2.1 Wrapping Operator

One possibility for precisely approximating the semantics of programs that operate on bounded integer
variables is to follow the approach described in [SKO7]. The idea is to associate space dimensions to the
unwrapped values of bounded variables. Suppose j is a w-bit, unsigned program variable associated to
a space dimension labeled by the variable x. If x is constrained by some numerical abstraction to take
values in a set S C R, then the program variable j can only take values in { wrapy (z) | zeS } There
are two reasons why this is interesting: firstly, this allows for the retention of relational information by
using a single numerical abstraction tracking multiple program variables. Secondly, the integers modulo
2" form a ring of equivalence classes on which addition and multiplication are well defined. This means,
e.g., that assignments with affine right-hand sides and involving only variables with the same bit-width and
representation can be safely modeled by affine images. While upper bounds and widening can be used
without any precaution, anything that can be reconducted to intersection requires a preliminary wrapping
phase, where the dimensions corresponding to bounded integer types are brought back to their natural
domain. This necessity arises naturally for the analysis of conditionals and conversion operators, as well
as in the realization of domain combinations.

The PPL provides a general wrapping operator that is parametric with respect to the set of space dimensions
(variables) to be wrapped, the width, representation and overflow behavior of all these variables. An op-
tional constraint system can, when given, improve the precision. This constraint system, which must only
depend on variables with respect to which wrapping is performed, is assumed to represent the conditional
or looping construct guard with respect to which wrapping is performed. Since wrapping requires the com-
putation of upper bounds and due to non-distributivity of constraint refinement over upper bounds, passing
a constraint system in this way can be more precise than refining the result of the wrapping operation after-
wards. The general wrapping operator offered by the PPL also allows control of the complexity/precision
ratio by means of two additional parameters: an unsigned integer encoding a complexity threshold, with
higher values resulting in possibly improved precision; and a Boolean controlling whether space dimen-
sions should be wrapped individually, something that results in much greater efficiency to the detriment of
precision, or collectively.

Note that the PPL assumes that any space dimension subject to wrapping is being used to capture the
value of bounded integer values. As a consequence the library is free to drop, from the involved numerical
abstraction, any point having a non-integer coordinate that corresponds to a space dimension subject to
wrapping. It must be stressed that freedom to drop such points does not constitute an obligation to remove
all of them (especially because this would be extraordinarily expensive on some numerical abstractions).
The PPL provides operators for the more systematic removal of points with non-integral coordinates.

The wrapping operator will only remove some of these points as a by-product of its main task and only
when this comes at a negligible extra cost.

1.4 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see [BRZHO02b], [Fuk98], [NW88], and [Wil93].

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8 CONTENTS

1.4.1 Vectors, Matrices and Scalar Products

We denote by R” the n-dimensional vector space on the field of real numbers R, endowed with the standard
topology. The set of all non-negative reals is denoted by R,.. For each i € {0,...,n — 1}, v; denotes the
i-th component of the (column) vector v = (v, . .. ,fun_l)T € R™. We denote by O the vector of R",
called the origin, having all components equal to zero. A vector v € R™ can be also interpreted as a matrix
in R"*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by v™.

The scalar product of v, w € R™, denoted (v, w), is the real number
n—1
’UT’LU = Z Viw;.
i=0

For any S7, So C R™, the Minkowski’s sum of Sy and Sy is: S1 + Sz = {v1 +va | v € S1,v2 € Sa }.

1.4.2 Affine Hyperplanes and Half-spaces

For each vector @ € R™ and scalar b € R, where a # 0, and for each relation symbol 1 € {=, >, >}, the
linear constraint (a,) < b defines:

* an affine hyperplane if it is an equality constraint, i.e., if 1 € {=};
* atopologically closed affine half-space if it is a non-strict inequality constraint, i.e., if 1 € {>};

* atopologically open affine half-space if it is a strict inequality constraint, i.e., if <t € {>}.

Note that each hyperplane (a, x) = b can be defined as the intersection of the two closed affine half-spaces
(a,x) > band (—a,x) > —b. Also note that, when a = 0, the constraint (0,) b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector space R™ or
the empty set &.

1.4.3 Convex Polyhedra

The set P C R" is a not necessarily closed convex polyhedron (NNC polyhedron, for short) if and only if
either P can be expressed as the intersection of a finite number of (open or closed) affine half-spaces of R™
orn = (0 and P = @. The set of all NNC polyhedra on the vector space R" is denoted PP,,.

The set P € P, is a closed convex polyhedron (closed polyhedron, for short) if and only if either P can be
expressed as the intersection of a finite number of closed affine half-spaces of R orn = 0 and P = @.
The set of all closed polyhedra on the vector space R™ is denoted CP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty set & and the vector space R are,
respectively, the smallest and the biggest elements of both IP,, and CPP,,. The vector space R" is also called
the universe polyhedron.

In theoretical terms, IP,, is a lattice under set inclusion and CIP,, is a sub-lattice of IP,,.

Note

In the following, we will usually specify operators on the domain P,, of NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domain CP,, of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (see Topologies and Topological-compatibility): while com-
puting polyhedra in IP,, may provide more precise results, polyhedra in CP,, can be represented and

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.5 Representations of Convex Polyhedra 9

manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler domain CP,,. Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

1.44 Bounded Polyhedra

An NNC polyhedron P € P, is bounded if there exists a A € R, such that:
PC{xzeR"|-A<zj<Aforj=0,...,n—1}.

A bounded polyhedron is also called a polytope.

1.5 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

1.5.1 Constraints Representation
In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as a constraint.

By definition, each polyhedron P € PP, is the set of solutions to a constraint system, i.e., a finite number
of constraints. By using matrix notation, we have

’Pdéf{wER"|A1w=b1,A2€BZb2,A3w>b3}ﬂ

where, for all i € {1,2,3}, A; € R™ x R™ and b; € R™, and mq,ma2, ms € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

1.5.2 Combinations and Hulls

Let S = {x1,...,x;r} C R™ be a finite set of vectors. For all scalars A\1,...,\r € R, the vector
v = Z?Zl Ajx; is said to be a linear combination of the vectors in S. Such a combination is said to be

* a positive (or conic) combination, if Vj € {1,...,k} : A\; e R;
* an affine combination, if Z?Il No=1,

* a convex combination, if it is both positive and affine.

We denote by linear.hull(S) (resp., conic.hull(.S), affine.hull(S), convex.hull(.S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors in S.

Let P,C C R™, where P U C = S. We denote by nnc.hull(P, C) the set of all convex combinations of
the vectors in S such that A; > 0 for some x; € P (informally, we say that there exists a vector of P that
plays an active role in the convex combination). Note that nnc.hull(P, C') = nnc.hull(P, P U C) so that,
ifC C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed that linear.hull(.S) is an affine space, conic.hull(S) is a topologically closed convex
cone, convex.hull(.S) is a topologically closed polytope, and nnc.hull(P, C') is an NNC polytope.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10 CONTENTS

1.5.3 Points, Closure Points, Rays and Lines

Let P € IP,, be an NNC polyhedron. Then

* avector p € P is called a point of P;
* avector ¢c € R"” is called a closure point of P if it is a point of the topological closure of P;

e avector r € R™, where r # 0, is called a ray (or direction of infinity) of P if P # & and p+Ar € P,
for all points p € Pand all A € R_;

e avector I € R" is called a line of P if both I and —I are rays of P.

A point of an NNC polyhedron P € P, is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points in P. A ray r of a polyhedron P is an extreme ray if and
only if it cannot be expressed as a positive combination of any other pair ; and r5 of rays of P, where
T # Ary, 7 # Arg and 7y # Arg for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

1.5.4 Generators Representation

Each NNC polyhedron P € P,, can be represented by finite sets of lines L, rays R, points P and closure
points C' of P. The 4-tuple G = (L, R, P, C) is said to be a generator system for P, in the sense that

P = linear.hull(L) + conic.hull(R) 4+ nnc.hull(P, C),

where the symbol * 4’ denotes the Minkowski’s sum.

When P € CP, is a closed polyhedron, then it can be represented by finite sets of lines L, rays R and
points P of P. In this case, the 3-tuple G = (L, R, P) is said to be a generator system for P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point of P is a point of P.

For any P € P,, and generator system G = (L, R, P, C) for P, we have P = @ if and only if P = &. Also
P must contain all the vertices of P although P can be non-empty and have no vertices. In this case, as P is
necessarily non-empty, it must contain points of P that are not vertices. For instance, the half-space of R?
corresponding to the single constraint y > 0 can be represented by the generator system G = (L, R, P, C)
such that L = {(1,0)™}, R = {(0,1)"}, P = {(0,0)"}, and C' = @. It is also worth noting that the
only ray in R is not an extreme ray of P.

1.5.5 Minimized Representations
A constraints system C for an NNC polyhedron P € P, is said to be minimized if no proper subset of C is
a constraint system for P.

Similarly, a generator system G = (L, R, P, C) for an NNC polyhedron P € P, is said to be minimized
if there does not exist a generator system G’ = (L', R', P’,C") # G for P such that L' C L, R’ C R,
P CPandC’' CC.

1.5.6 Double Description

Any NNC polyhedron P can be described by using a constraint system C, a generator system G, or both
by means of the double description pair (DD pair) (C,G). The double description method is a collection

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.5 Representations of Convex Polyhedra 11

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhedra-
: this is because some operators, such as intersections and poly-hulls, are provided with a natural and effi-
cient implementation when using one of the representations in a DD pair, while being rather cuambersome
when using the other.

1.5.7 Topologies and Topological-compatibility

As indicated above, when an NNC polyhedron P is necessarily closed, we can ignore the closure points
contained in its generator system G = (L, R, P, C') (as every closure point is also a point) and represent P
by the triple (L, R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron, NNC and
C. We shall abuse terminology by referring to the topological kind of a polyhedron as its topology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following topological-compatibility rules:

* polyhedra are topologically-compatible if and only if they have the same topology;

« all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

* strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

1.5.8 Space Dimensions and Dimension Compatibility

The space dimension of an NNC polyhedron P € P, (resp., a C polyhedron P € CP,,) is the dimension
n € N of the corresponding vector space R™. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (space) dimension-compatibility rules:

* polyhedra are dimension-compatible if and only if they have the same space dimension;

* the constraint (a,x) >< b where < € {=,>,>} and a,x € R™, is dimension-compatible with a
polyhedron having space dimension n if and only if m < n;

* the generator x € R™ is dimension-compatible with a polyhedron having space dimension 7 if and
only if m < n;

* a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

12 CONTENTS

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

1.5.9 Affine Independence and Affine Dimension

A finite set of points {1, ..., xr} C R™ is affinely independent if, for all A, ..., \; € R, the system of
equations

k k
Z)\imi:& Z)\ZZO
i=1 =1

implies that, foreachi =1,... k, A\; = 0.
The maximum number of affinely independent points in R™ is n + 1.

A non-empty NNC polyhedron P € P, has affine dimension k € N, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that 0 < dim(P) < n.
By convention, the affine dimension of an empty polyhedron is O (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedron is —1).

Note

The affine dimension & < n of an NNC polyhedron P € PP, must not be confused with the space
dimension n of P, which is the dimension of the enclosing vector space R™. In particular, we can have
dim(P) # dim(Q) even though P and Q are dimension-compatible; and vice versa, P and Q may be
dimension-incompatible polyhedra even though dim(P) = dim(Q).

1.5.10 Rational Polyhedra

An NNC polyhedron is called rational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations.

1.6 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

1.6.1 Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedra Py, Py € P, the intersection of P; and P, defined as the set intersection
P1 NPa, is the biggest NNC polyhedron included in both P; and Ps; similarly, the convex polyhedral hull
(or poly-hull) of P; and P», denoted by P; W P, is the smallest NNC polyhedron that includes both P
and Ps. The intersection and poly-hull of any pair of closed polyhedra in CP,, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binary meet and the
binary join operators on the lattices IP,, and CP,,.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.6 Operations on Convex Polyhedra 13

1.6.2 Convex Polyhedral Difference

For any pair of NNC polyhedra P;, Py € P, the convex polyhedral difference (or poly-difference) of Py
and Ps is defined as the smallest convex polyhedron containing the set-theoretic difference of P; and Ps.

In general, even though Py, Py € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

1.6.3 Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra
P € P, and Q € P, (taken in this order) is the polyhedron R € P,, 1, such that

def
R ; {(ZEO;"'axn—lyy()v"-aym—l)T S Rner (wa"vxn—l)T € Pa (yO,“';ym—l)T S Q}

Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n + m
and then add a suitably renamed-apart version of the constraints defining Q.

1.6.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number ¢ of space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedron @ € P,,;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operator add_space_dimensions_and_embed embeds the polyhedron P into the new vector
space of dimension 7 + n and returns the polyhedron Q defined by all and only the constraints defining P
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedron P C R? and adding a third space dimension, the result will be the polyhedron

Q= { (J?o,l‘l,l‘g)T eR3 ’ (.Qfo,xl)T S P}

In contrast, the operator add_space_dimensions_and_project projects the polyhedron P into
the new vector space of dimension i + n and returns the polyhedron Q whose constraint system, besides
the constraints defining P, will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P C R? and adding a third space dimension, the result will be the polyhedron

Q= { (l’o,xl,O)T € Rg | (xo,xl)T S P}

1.6.5 Removing Dimensions from the Vector Space
The library provides two operators for removing space dimensions from an NNC polyhedron P € P,,
therefore transforming it into a new NNC polyhedron Q € P, where m < n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, letting P € P4 be the singleton set {(3, 1,0, 2)T} C R4,
then after invoking this operator with the set of variables {1, 22} the resulting polyhedron is

0={(33,2)"} CR%.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

14 CONTENTS

Given a space dimension m less than or equal to that of the polyhedron, the operator remove_higher—
_space_dimensions removes the space dimensions having indices greater than or equal to m. For
instance, letting P € P4 defined as before, by invoking this operator with m = 2 the resulting polyhedron
will be

9={@B1"} CRrR%.

1.6.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space R™ according to a partial injective function p: {0,...,n — 1} ~— N such that p({O, N 1}) =
{0,...,m — 1} with m < n. Dimensions corresponding to indices that are not mapped by p are removed.

If m = 0, i.e., if the function p is undefined everywhere, then the operator projects the argument polyhedron
P € P,, onto the zero-dimension space R; otherwise the result is Q € P,,, given by

Q déf { (Up71(0), .. .,Upfl(m_l))T ‘ (Uo, Ce ,Un_l)T epP }

1.6.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
polyhedron P € P,, with n > 0, so that dimensions n, n + 1, ..., n +m — 1 of the result Q are exact
copies of the i-th space dimension of P. More formally,

Jv,weP.u =v;
Qdéf u € R"™ AVji=nn+1,....n+m-1:u; =w;
AVE=0,....n—1:k#i = up =vp = wy

This operation has been proposed in [GDDetal04].
1.6.8 Folding Multiple Dimensions of the Vector Space into One Dimension
The operator fold_space_dimensions provided by the library, given a polyhedron P € P,,, with

n > 0, folds a set of space dimensions J = {jo, ..., jm—1}, withm < n and j < n for each j € J, into
space dimension ¢ < n, where ¢ ¢ J. The result is given by

Q= |4
=0

where

0,, & {u cR"™

JveP . uy=v;
AVE=0,....n—1:k#i = up =vg
and, ford =0,...,m—1,

def _
1ol u e RP™
O { AVE=0,....n—1:k#i = up = vy

v eP . uy =vy, }
)

and, finally, fork =0, ...,n — 1,
KEk—#{jedk>j},
(# S denotes the cardinality of the finite set).

This operation has been proposed in [GDDetal04].

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.6 Operations on Convex Polyhedra 15

1.6.9 Images and Preimages of Affine Transfer Relations

For each relation ¢ C R™ x R™, we denote by ¢(S) C R™ the image under ¢ of the set S C R™; formally,

def

¢(5) =

Similarly, we denote by ¢=*(S’) C R™ the preimage under ¢ of S’ C R™, that is

weR™ | FveS. (v,w)ed}.

def

¢~ (S")

If n = m, then the relation ¢ is said to be space dimension preserving.

{veR"|Fwe s . (v,w)eg}.

The relation ¢ C R™ x R™ is said to be an affine relation if there exists £ € N such that

¢
Yo e R",weR™: (v,w) € p — /\((ci,w> i {(a;, v) —|—bi),
i=1

where a; € R”, ¢; e R™, b; € Randx; € {<,<,=,>,>},foreachi=1,...,¢

As a special case, the relation ¢ C R™ x R™ is an affine function if and only if there exist a matrix
A € R™ x R™ and a vector b € R™ such that,

Vo e R, weR™: (v,w) € p < w=Av+b.

The set P,, of NNC polyhedra is closed under the application of images and preimages of any space di-
mension preserving affine relation. The same property holds for the set CP,, of closed polyhedra, provided
the affine relation makes no use of the strict relation symbols < and >. Images and preimages of affine
relations can be used to model several kinds of transition relations, including deterministic assignments of
affine expressions, (affinely constrained) nondeterministic assignments and affine conditional guards.

A space dimension preserving relation ¢ C R™ x R™ can be specified by means of a shorthand notation:

* the vector = (zy,. .. ,xn,l)T of unprimed variables is used to represent the space dimensions of
the domain of ¢;

s the vector ©’ = (x},...,x!, ;)T of primed variables is used to represent the space dimensions of
the range of ¢;

* any primed variable that “does not occur” in the shorthand specification is meant to be unaffected
by the relation; namely, for each index ¢ € {0,...,n — 1}, if in the syntactic specification of the
relation the primed variable x} only occurs (if ever) with coefficient 0, then it is assumed that the
specification also contains the constraint =, = z;.

As an example, assuming ¢ C R3 x R3, the notation x{, — x, > 2z — 1, where the primed variable x|
does not occur, is meant to specify the affine relation defined by

Vo € R* w e R?: (v,w) € ¢ <= (wo —wa > 209 —v1) A (w1 = v1).
The same relation is specified by z(, + 0 - &} — xf, > 2x¢ — x1, since 2} occurs with coefficient 0.

The library allows for the computation of images and preimages of polyhedra under restricted subclasses
of space dimension preserving affine relations, as described in the following.

1.6.10 Single-Update Affine Functions.

Given a primed variable z}, and an unprimed affine expression (a, @)+, the affine function ¢ = (x}, = (a,x) + b): R™ —
R™ is defined by
Vv € R": ¢p(v) = Av + b,

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

16 CONTENTS

where
1 0 0 0 0
0 1 0 .- 0 0
A=]ao k—1 Gk Gg41 an—1 |, b= |0
0 0 1 0 0
0 -+ .- 0 0 1 0

and the a; (resp., b) occur in the (k 4 1)st row in A (resp., position in b). Thus function ¢ maps any vector
(Uo, R ,Un,1>T to

n—1 T
(’UO7 ceey (Zi:O a;v; + b), ey Un—l) .

The affine image operator computes the affine image of a polyhedron P under x}, = (a,x) + b. For
instance, suppose the polyhedron P to be transformed is the square in R? generated by the set of points
{(0,0),(0,3)™,(3,0)™,(3,3)T}. Then, if the primed variable is z and the affine expression is zo +
21 +4 (sothat k = 0, a9 = 1,a1 = 2,b = 4), the affine image operator will translate P to the
parallelogram P; generated by the set of points {(4,0), (10,3)T,(7,0)T, (13,3)™} with height equal to
the side of the square and oblique sides parallel to the line x¢y — 2x1. If the primed variable is as before
(i.e., k = 0) but the affine expression is z; (so that ag = 0,a; = 1,b = 0), then the resulting polyhedron
‘Ps is the positive diagonal of the square.

The affine preimage operator computes the affine preimage of a polyhedron P under zj, = (a, «) + b. For
instance, suppose now that we apply the affine preimage operator as given in the first example using primed
variable o and affine expression xy + 2x1 + 4 to the parallelogram P;; then we get the original square P
back. If, on the other hand, we apply the affine preimage operator as given in the second example using
primed variable x(and affine expression x; to Po, then the resulting polyhedron is the stripe obtained by
adding the line (1,0)" to polyhedron Ps.

Observe that provided the coefficient a, of the considered variable in the affine expression is non-zero, the
affine function is invertible.

1.6.11 Single-Update Bounded Affine Relations.

Given a primed variable x}, and two unprimed affine expressions b = (a,) + b and ub = (¢, x) + d, the
bounded affine relation ¢ = (Ib < x}. < ub) is defined as

Yo e R"w e R": (v,w) € ¢ — ((a,v>+b§wk§<c,v>+d)/\< /\ wi:vi)
0<i<n,iZk

1.6.12 Affine Form Relations.

Let F be the set of floating point numbers representables in a certain format f and let I; be the set of real
intervals with bounds in F¢. We can define a floating-point interval linear form (o, x) + f3 as:

(a,a:) +B = QpTo +... +an—1xn—1 +ﬁ7

where 3, ay, € [y foreachk =0,...,n — 1.

Given a such linear form 1f and a primed variable x}, the affine form image operator computes the bounded
affine image of a polyhedron P under Ib < z < ub, where 1b and ub are the upper and lower bound of 1f
respectively.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.6 Operations on Convex Polyhedra 17

1.6.13 Generalized Affine Relations.

Similarly, the generalized affine relation ¢ = (Ihs’ i rhs), where lhs = (¢,) + d and rhs = (a,) + b
are affine expressions and 1 € {<, <, =, >, >} is a relation symbol, is defined as

Vo eR",weR": (v,w) € ¢ < ((c,w>+dl>4<a,v>+b)A(/\ wi:vi).
0<i<n,c;=0

When lhs = z, and 1 € {=}, then the above affine relation becomes equivalent to the single-update affine
function zj, = rhs (hence the name given to this operator). It is worth stressing that the notation is not
symmetric, because the variables occurring in expression lhs are interpreted as primed variables, whereas
those occurring in rhs are unprimed; for instance, the transfer relations lhs’ < rhs and rhs’ > 1hs are not
equivalent in general.

1.6.14 Cylindrification Operator

The operator unconstrain computes the cylindrification [HMT71] of a polyhedron with respect to one
of its variables. Formally, the cylindrification @ € P,, of an NNC polyhedron P € P,, with respect to
variable index 7 € {0,...,n — 1} is defined as follows:

OQ={weR"|weP.Vjec{0,....,n—1}:j#i = w; =v; }.

Cylindrification is an idempotent operation; in particular, note that the computed result has the same space
dimension of the original polyhedron. A variant of the operator above allows for the cylindrification of a
polyhedron with respect to a finite set of variables.

1.6.15 Time-Elapse Operator

The time-elapse operator has been defined in [HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedra P, Q € P, the time-elapse between P and Q, denoted P * Q, is the smallest NNC polyhedron
containing the set

{p+XMeR"|peP,qec QrER, }.

Note that, if P, Q € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

1.6.16 Meet-Preserving Enlargement and Simplification

Let P, Q, R € P, be NNC polyhedra. Then:
¢ R is meet-preserving with respect to P using context Qif RN Q=P N Q;
e R is an enlargement of P if R O P.

* R is a simplification with respect to P if r < p, where r and p are the cardinalities of minimized
constraint representations for R and P, respectively.

Notice that an enlargement need not be a simplification, and vice versa; moreover, the identity function is
(trivially) a meet-preserving enlargement and simplification.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

18 CONTENTS

The library provides a binary operator (simplify_using_context) for the domain of NNC polyhedra
that returns a polyhedron which is a meet-preserving enlargement simplification of its first argument using
the second argument as context.

The concept of meet-preserving enlargement and simplification also applies to the other basic domains
(boxes, grids, BD and octagonal shapes). See below for a definition of the concept of meet-preserving
simplification for powerset domains.

1.6.17 Relation-With Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

Suppose P is an NNC polyhedron and C an arbitrary constraint system representing 7. Suppose also that
¢ = ((a,x) > b) is a constraint with 1 € {=, >, >} and Q the set of points that satisfy c. The possible
relations between P and c are as follows.

P is disjoint from c if P N Q = &; that is, adding ¢ to C gives us the empty polyhedron.

o P strictly intersects cift PN Q # @ and P N Q C P; that is, adding c to C gives us a non-empty
polyhedron strictly smaller than P.

e Pisincluded in c if P C Q; that is, adding c to C leaves P unchanged.

* P saturates c if P C H, where H is the hyperplane induced by constraint c, i.e., the set of points
satisfying the equality constraint (a,) = b; that is, adding the constraint (a,) = b to C leaves P
unchanged.

The polyhedron P subsumes the generator g if adding g to any generator system representing P does not
change P.

1.6.18 Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs [Hal79], also
described in [HPR97]. Note that in the computation of the H79-widening P V Q of two polyhedra
P, Q € CP, it is required as a precondition that P C Q (the same assumption was implicitly present in
the cited papers).

The second widening operator, that we call BHRZ03-widening, is an instance of the specification provided
in [BHRZ03a]. This operator also requires as a precondition that P C Q and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.7 Intervals and Boxes 19

Note

As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedra P and Q (where P C Q) are identified by program variables p and
g, respectively, then the call g. H79_widening_assign (p) will assign the polyhedron P V Q to
variable g. Namely, it is the bigger polyhedron Q which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test (P O P V Q can be coded as p.contains (q)). Note that, in the above context, a call such
asp.H79_widening_assign (q) is likely to result in undefined behavior, since the precondition
Q C P will be missed (unless it happens that P = Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the language
interfaces.

1.6.19 Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameter k£ and only apply widenings starting from the k-th iteration.

The library also supports an improved widening delay strategy, that we call widening with tokens [BH-
RZ03a]. A token is a sort of wild card allowing for the replacement of the widening application by the
exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to the potential precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed number k of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

1.6.20 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponding limited extrapolation operator, which
can be used to implement the widening “up to” technique as described in [HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above by intersecting the result of the limited extrapolation operation with the box obtained as a
result of applying the CC76-widening to the smallest boxes enclosing the two argument polyhedra.

1.7 Intervals and Boxes

The PPL provides support for computations on non-relational domains, called boxes, and also the interval
domains used for their representation.

An interval in R is a pair of bounds, called lower and upper. Each bound can be either (1) closed and
bounded, (2) open and bounded, or (3) open and unbounded. 1f the bound is bounded, then it has a value in
R. For each vector @ € R™ and scalar b € R, and for each relation symbol < € {=, >, >}, the constraint

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

20 CONTENTS

(a,x) > b is said to be a interval constraint if there exist an index ¢ € {0,...,n — 1} such that, for all
ke{0,...,i —1,i+1,...,n — 1}, ap = 0. Thus each interval constraint that is not a tautology or
inconsistent has the formz =r,x <r,z >r,x <rorx > r, withr € R.

Letting B be a sequence of n intervals and e; = (0,...,1,...,0)" be the vector in R” with 1 in the ’th
position and zeroes in every other position; if the lower bound of the i’th interval in B is bounded, the
corresponding interval constraint is defined as (e;,) > b, where b is the value of the bound and < is > if
it is a closed bound and > if it is an open bound. Similarly, if the upper bound of the ¢’th interval in 5 is
bounded, the corresponding interval constraint is defined as (e;,) 1 b, where b is the value of the bound
and < is < if it is a closed bound and < if it is an open bound.

A convex polyhedron P € CP, is said to be a box if and only if either P is the set of solutions to a finite
set of interval constraints or n = 0 and P = &. Therefore any n-dimensional box P in R” where n > 0
can be represented by a sequence of n intervals I3 in R and P is a closed polyhedron if every bound in the
intervals in B is either closed and bounded or open and unbounded.

1.7.1 Widening and Extrapolation Operators on Boxes

The library provides a widening operator for boxes. Given two sequences of intervals defining two n-
dimensional boxes, the CC76-widening applies, for each corresponding interval and bound, the interval
constraint widening defined in [CC76]. For extra precision, this incorporates the widening with thresholds
as defined in [BCCetal02] with {—2, —1,0, 1, 2} as the set of default threshold values.

1.8 Weakly-Relational Shapes

The PPL provides support for computations on numerical domains that, in selected contexts, can achieve
a better precision/efficiency ratio with respect to the corresponding computations on a “fully relational”
domain of convex polyhedra. This is achieved by restricting the syntactic form of the constraints that can
be used to describe the domain elements.

1.8.1 Bounded Difference Shapes

For each vector @ € R™ and scalar b € R, and for each relation symbol 1 € {=, >}, the linear constraint
(a,x) < b is said to be a bounded difference if there exist two indices ¢, j € {0,...,n — 1} such that:

® a;,a; € {—1, 0, 1} and a; 75 a;;
e ap=0,forallk ¢ {i,5}.
A convex polyhedron P € CP, is said to be a bounded difference shape (BDS, for short) if and only if

either P can be expressed as the intersection of a finite number of bounded difference constraints or n = 0
and P = &.

1.8.2 Octagonal Shapes

For each vector @ € R™ and scalar b € R, and for each relation symbol >t € {=, >}, the linear constraint
(a,x) < b is said to be an octagonal if there exist two indices i, j € {0,...,n — 1} such that:

e a;,a; € {—1,0,1};

* ap=0,forall k ¢ {i,5}.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.9 Rational Grids 21

A convex polyhedron P € CP, is said to be an octagonal shape (OS, for short) if and only if either P can
be expressed as the intersection of a finite number of octagonal constraints or n = 0 and P = &.

Note that, since any bounded difference is also an octagonal constraint, any BDS is also an OS. The name
“octagonal” comes from the fact that, in a vector space of dimension 2, a bounded OS can have eight sides
at most.

1.8.3 Weakly-Relational Shapes Interface

By construction, any BDS or OS is always topologically closed. Under the usual set inclusion ordering,
the set of all BDSs (resp., OSs) on the vector space R” is a lattice having the empty set & and the universe
R™ as the smallest and the biggest elements, respectively. In theoretical terms, it is a meet sub-lattice of
CP,,; moreover, the lattice of BDSs is a meet sublattice of the lattice of OSs. The least upper bound of a
finite set of BDSs (resp., OSs) is said to be their bds-hull (resp., oct-hull).

As far as the representation of the rational inhomogeneous term of each bounded difference or octagonal
constraint is concerned, several rounding-aware implementation choices are available, including:

* bounded precision integer types;
* bounded precision floating point types;

* unbounded precision integer and rational types, as provided by GMP.

The user interface for BDSs and OSs is meant to be as similar as possible to the one developed for the do-
main of closed polyhedra: in particular, all operators on polyhedra are also available for the domains of B-
DSs and OSs, even though they are typically characterized by a lower degree of precision. For instance, the
bds-difference and oct-difference operators return (the smallest) over-approximations of the set-theoretical
difference operator on the corresponding domains. In the case of (generalized) images and preimages of
affine relations, suitable (possibly not-optimal) over-approximations are computed when the considered
relations cannot be precisely modeled by only using bounded differences or octagonal constraints.

1.8.4 Widening and Extrapolation Operators on Weakly-Relational Shapes

For the domains of BDSs and OSs, the library provides a variant of the widening operator for convex
polyhedra defined in [CH78]. The implementation follows the specification in [BHMZ05a,BHMZ05b],
resulting in an operator which is well-defined on the corresponding domain (i.e., it does not depend on the
internal representation of BDSs or OSs), while still ensuring convergence in a finite number of steps.

The library also implements an extension of the widening operator for intervals as defined in [CC76]. The
reader is warned that such an extension, even though being well-defined on the domain of BDSs and OSs,
is not provided with a convergence guarantee and is therefore an extrapolation operator.

1.9 Rational Grids

In this section we introduce rational grids as provided by the library. See also [BDHetal05] for a detailed
description of this domain.

The library supports two representations for the grids domain; congruence systems and grid generator
systems. We first describe linear congruence relations which form the elements of a congruence system.

1.9.1 Congruences and Congruence Relations

For any a, b, f € R, a = b denotes the congruence 3y € Z . a — b = puf.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

22 CONTENTS

Let S € {Q,R}. For each vector @ € S™ \ {0} and scalars b, f € S, the notation (a,x) =y b stands for
the linear congruence relation in S™ defined by the set of vectors

{veR"|IueZ. (a,v)=b+puf};

when f # 0, the relation is said to be proper; (a,x) =q b (i.e., when f = 0) denotes the equality
(a,x) = b. f is called the frequency or modulus and b the base value of the relation. Thus, provided
a # 0, the relation (a,) = b defines the set of affine hyperplanes

{(la,2) =b+uf) |nel};

if b =5 0, (0,) =y b defines the universe R" and the empty set, otherwise.

1.9.2 Rational Grids

The set £ C R"™ is a rational grid if and only if either L is the set of vectors in R™ that satisfy a finite
system C of congruence relations in Q™ orn = 0 and £ = @.

We also say that L is described by C and that C is a congruence system for L.
The grid domain G, is the set of all rational grids described by finite sets of congruence relations in Q.

If the congruence system C describes the &, the empty grid, then we say that C is inconsistent. For example,
the congruence systems {(0,x) =¢ 1} meaning that 0 = 1 and {(a,z) =, 0, (a,z) =, 1}, for any
a € R", meaning that the value of an expression must be both even and odd are both inconsistent since
both describe the empty grid.

When ordering grids by the set inclusion relation, the empty set & and the vector space R™ (which is
described by the empty set of congruence relations) are, respectively, the smallest and the biggest elements
of G,,. The vector space R" is also called the universe grid.

In set theoretical terms, G,, is a lattice under set inclusion.

1.9.3 Integer Combinations

Let S = {x1,...,xx} € R" be a finite set of vectors. For all scalars p1,...,ur € Z, the vector
v =3 ;_; H;T; is said to be a integer combination of the vectors in S.

We denote by int.hull(S) (resp., int.affine.hull(.S)) the set of all the integer (resp., integer and affine)
combinations of the vectors in S.
1.9.4 Points, Parameters and Lines

Let £ be a grid. Then

e avector p € L is called a grid point of L;

e avector g € R", where q # 0, is called a parameter of L if L # & and p + uq € L, for all points
p € Landall u € Z;

e avector I € R" is called a grid line of L if L # @ and p + A\l € L, for all points p € £ and all
AeR.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.9 Rational Grids 23

1.9.5 The Grid Generator Representation

We can generate any rational grid in G,, from a finite subset of its points, parameters and lines; each point
in a grid is obtained by adding a linear combination of its generating lines to an integral combination of its
parameters and an integral affine combination of its generating points.

If L, Q, P are each finite subsets of Q™ and
L = linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ° +’ denotes the Minkowski’s sum, then £ € (,, is a rational grid (see Section 4.4
in [Sch99] and also Proposition 8 in [BDHetal05]). The 3-tuple (L, @, P) is said to be a grid generator
system for £ and we write £ = ggen(L, Q, P).

Note that the grid £ = ggen(L, Q, P) = o if and only if the set of grid points P = @. If P # &, then
L = ggen(L,d,Qp U P) where, forsomep € P,Qp ={p+q|qcQ}

1.9.6 Minimized Grid Representations

A minimized congruence system C for £ is such that, if C’ is another congruence system for £, then
#C < #(C’. Note that a minimized congruence system for a non-empty grid has at most n congruence
relations.

Similarly, a minimized grid generator system G = (L, Q, P) for L is such that, if ¢’ = (L', Q’, P') is
another grid generator system for £, then # L < # L' and #Q + # P < # Q' + # P’. Note that a
minimized grid generator system for a grid has no more than a total of n + 1 grid lines, parameters and
points.

1.9.7 Double Description for Grids

As for convex polyhedra, any grid £ can be described by using a congruence system C for £, a grid
generator system G for £, or both by means of the double description pair (DD pair) (C,G). The double
description method for grids is a collection of theoretical results very similar to those for convex polyhedra
showing that, given one kind of representation, there are algorithms for computing a representation of the
other kind and for minimizing both representations.

As for convex polyhedra, such changes of representation form a key step in the implementation of many
operators on grids such as, for example, intersection and grid join.

1.9.8 Space Dimensions and Dimension-compatibility for Grids

The space dimension of a grid L € G, is the dimension n € N of the corresponding vector space R".
The space dimension of congruence relations, grid generators and other objects of the library is defined
similarly.

1.9.9 Affine Independence and Affine Dimension for Grids
A non-empty grid L € G, has affine dimension k € N, denoted by dim(G) = k, if the maximum number

of affinely independent points in G is k£ + 1. The affine dimension of an empty grid is defined to be 0. Thus
we have 0 < dim(G) < n.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

24 CONTENTS

1.10 Operations on Rational Grids

In general, the operations on rational grids are the same as those for the other PPL domains and the def-
initions of these can be found in Section Operations on Convex Polyhedra. Below we just describe those
operations that have features or behavior that is in some way special to the grid domain.

1.10.1 Affine Images and Preimages

As for convex polyhedra (see Single-Update Affine Functions), the library provides affine image and preim-
age operators for grids: given a variable z; and linear expression expr = {(a,) + b, these determine the
affine transformation ¢ = (2}, = (a, @) +b): R" — R" that transforms any point (v, ...,v,—1)" ina
grid L to

T
(Uo, ce (Z;L:_Olaivi + b), e ,vn_l) .

The affine image operator computes the affine image of a grid £ under =), = (a,x) + b. For instance,
suppose the grid £ to be transformed is the non-relational grid in R? generated by the set of grid points
{(0,0)%,(0,3)T,(3,0)T}. Then, if the considered variable is o and the linear expression is 3z +2x1 + 1
(sothat k = 0, ap = 3,a; = 2,b = 1), the affine image operator will translate £ to the grid £, generated
by the set of grid points {(1,0)™, (7,3)T, (10,0)™} which is the grid generated by the grid point (1, 0) and
parameters (3, —3), (0, 9); or, alternatively defined by the congruence system {x =35 1,2+ y =g 1}. If the
considered variable is as before (i.e., £ = 0) but the linear expression is z1 (so that ag = 0,a; = 1,0 = 0),
then the resulting grid L5 is the grid containing all the points whose coordinates are integral multiples of 3
and lie on line x = y.

The affine preimage operator computes the affine preimage of a grid £ under ¢. For instance, suppose
now that we apply the affine preimage operator as given in the first example using variable zy and linear
expression 3zg + 221 + 1 to the grid £;; then we get the original grid £ back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variable x(and linear expression
21 to Lo, then the resulting grid will consist of all the points in R? where the y coordinate is an integral
multiple of 3.

Observe that provided the coefficient aj, of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

1.10.2 Generalized Affine Images

Similarly to convex polyhedra (see Generalized Affine Relations), the library provides two other grid oper-
ators that are generalizations of the single update affine image and preimage operators for grids. The gen-
eralized affine image operator ¢ = (lhs', rhs, f): R™ — R™, where lhs = (¢, z) + d and ths = (a,x) + b
are affine expressions and f € Q, is defined as

Yo eR" weR": (v,w) € <= ((c,w)+d=; <a7v>+b)/\< /\ wi:m).
0<i<n,c;=0

Note that, when lhs = zj, and f = 0, so that the transfer function is an equality, then the above operator is
equivalent to the application of the standard affine image of £ with respect to the variable z and the affine
expression rhs.

1.10.3 Frequency Operator

Let £ € G,, be any non-empty grid and expr = ({a, x) + b) be a linear expression. Then if, for some
¢, f € R, all the points in £ satisfy the congruence cg = (expr =; c), then the maximum f such that this
holds is called the frequency of £ with respect to expr.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.10 Operations on Rational Grids 25

The frequency operator provided by the library returns both the frequency f and a value val = (@, w) + b
where w € £ and

[val| = min{ |(a,v) +b| ‘ vE E}.

Observe that the above definition is also applied to other simple objects in the library like polyhedra,
octagonal shapes, bd-shapes and boxes and in such cases the definition of frequency can be simplified. For
instance, the frequency for an object P € IP,, is defined if and only if there is a unique value c such that P
saturates the equality (expr = ¢); in this case the frequency is 0 and the value returned is c.

1.10.4 Time-Elapse Operator
For any two grids L1, Lo € G, the time-elapse between L1 and Lo, denoted £ Lo, is the grid

{p+pgeR" |peliqgelouecl}.

1.10.5 Relation-with Operators

The library provides operators for checking the relation holding between a grid and a congruence, a grid
generator, a constraint or a (polyhedron) generator.

Suppose L is a grid and C an arbitrary congruence system representing £. Suppose also that cg =
({a, @) =/ b) is a congruence relation with L.z = gcon({cg}). The possible relations between £ and cg
are as follows.

» L is disjoint from cg if £L N L.; = @; that is, adding cg to C gives us the empty grid.

* L strictly intersects cg if LN Leg # @ and LN L, C L; that is, adding cg to C gives us a non-empty
grid strictly smaller than L.

» Lisincluded in cg if L C Lg; that is, adding cg to C leaves £ unchanged.

o L saturates cg if L is included in cg and f = 0, i.e., cg is an equality congruence.

For the relation between £ and a constraint, suppose that ¢ = ((a, x) b) is a constraint with > € {=, >
, >} and Q the set of points that satisfy c. The possible relations between £ and c are as follows.

e Lisdisjoint fromcif LN Q = @.
o L strictly intersects cit LN Q # T and LN Q C L.
e Lisincludedin cif L C Q.

e L saturates c if L is included in ¢ and < is =.

A grid £ subsumes a grid generator g if adding g to any grid generator system representing £ does not
change L.

A grid L subsumes a (polyhedron) point or closure point g if adding the corresponding grid point to any
grid generator system representing £ does not change £. A grid £ subsumes a (polyhedron) ray or line g
if adding the corresponding grid line to any grid generator system representing £ does not change L.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

26 CONTENTS

1.10.6 Wrapping Operator

The operator wrap_assign provided by the library, allows for the wrapping of a subset of the set of
space dimensions so as to fit the given bounded integer type and have the specified overflow behavior. In
order to maximize the precision of this operator for grids, the exact behavior differs in some respects from
the other simple classes of geometric descriptors.

Suppose L € G,, is a grid and .J a subset of the set of space dimensions {0,...,n — 1}. Suppose also that
the width of the bounded integer type is w so that the range of values R = {r ¢ R | 0 < r < 2%} if the
type is unsigned and R = {r € R | —2*~1 < r < 2%~!} otherwise. Consider a space dimension j € J
and a variable v; for dimension j.

If the value in £ for the variable v; is a constant in the range R, then it is unchanged. Otherwise the result
L' of the operation on £ will depend on the specified overflow behavior.

* Overflow impossible. In this case, it is known that no wrapping can occur. If the grid £ has no value
for the variable v; in the range R, then L is set empty. If v; has exactly one value @ € R in £, then
v; is set equal to a. Otherwise, L =L

* Overflow undefined. In this case, for each value a for v; in the grid £, the wrapped value can be any
value a+2z € R where z € Z. Therefore L' is obtained by adding the parameter (0, ..., 0, v;,0,...,0),
where v; = 1, to the generator system for L.

* Overflow wraps. In this case, if £ already satisfies the congruence v; = ¢ mod 2%, for some a € R,
then v; is set equal to o’ where ¢’ = ¢ mod 2% and o’ € R. Otherwise, £’ is obtained by adding
the parameter (0,...,0,v,,0,...,0), where v; = 2%, to the generator system for L.

1.10.7 Widening Operators

The library provides grid widening operators for the domain of grids. The congruence widening and
generator widening follow the specifications provided in [BDHetal05]. The third widening uses either the
congruence or the generator widening, the exact rule governing this choice at the time of the call is left
to the implementation. Note that, as for the widenings provided for convex polyhedra, all the operations
provided by the library for computing a widening £, V Lo of grids £4, L2 € G,, require as a precondition
that £1 C Lo.

Note

As is the case for the other operators on grids, the implementation overwrites one of the two grid
arguments with the result of the widening application. It is worth stressing that, in any widening
operation that computes the widening £; V L,, the resulting grid will be assigned to overwrite the
store containing the bigger grid L. The smaller grid £; is not modified. The same observation holds
for all flavors of widenings and extrapolation operators that are implemented in the library and for all
the language interfaces.

1.10.8 Widening with Tokens

This is as for widening with tokens for convex polyhedra.

1.10.9 Extrapolation Operators

Besides the widening operators, the library also implements several extrapolation operators, which differ
from widenings in that their use along an upper iteration sequence does not ensure convergence in a finite
number of steps.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.11 The Powerset Construction 27

In particular, for each grid widening that is provided, there is a corresponding limited extrapolation op-
erator, which can be used to implement the widening “up to” technique as described in [HPR97]. Each
limited extrapolation operator takes a congruence system as an additional parameter and uses it to improve
the approximation yielded by the corresponding widening operator. Note that, as in the case for convex
polyhedra, a convergence guarantee can only be obtained by suitably restricting the set of congruence
relations that can occur in this additional parameter.

1.11 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to
one that can represent disjunctive information (by using a finite number of disjuncts). The construction
follows the approach described in [Bag98], also summarized in [BHZ04] where there is an account of
generic widenings for the powerset domain (some of which are supported in the pointset powerset domain
instantiation of this construction described in Section The Pointset Powerset Domain).

1.11.1 The Powerset Domain

The domain is built from a pre-existing base-level domain D which must include an entailment relation
F’, meet operation ‘ ®’, a top element ‘ 1’ and bottom element ‘ 0.

Aset S € p(D) is called non-redundant with respect to * - if and only if 0 ¢ S and Vd;,d2 € S : dy
d2 = dj = do. The set of finite non-redundant subsets of D (with respect to ‘ ") is denoted by pf, (D).
The function Q' : pe(D) — pf, (D), called Omega-reduction, maps a finite set into its non-redundant
counterpart; it is defined, for each S € p¢(D), by

def

QO (S) Y s\ {deS|d=00rdd €S .dIFd }.

where d |- d’ denotes d - d' ANd #£ d.

As the intended semantics of a powerset domain element S € p¢(D) is that of disjunction of the semantics
of D, the finite set S is semantically equivalent to the non-redundant set ' (S); and elements of S will be
called disjuncts. The restriction to the finite subsets reflects the fact that here disjunctions are implemented
by explicit collections of disjuncts. As a consequence of this restriction, for any S € p¢(D) such that
S # {0}, Q7 (S) is the (finite) set of the maximal elements of S.

The finite powerset domain over a domain D is the set of all finite non-redundant sets of D and denoted
by Dp. The domain includes an approximation ordering ‘ -’ defined so that, for any S; and S2 € Dy,
S1 Fp &9 if and only if

Vdi € §1 :ddy € Sy . dq1 + ds.

Therefore the top element is {1} and the bottom element is the emptyset.

Note

As far as Omega-reduction is concerned, the library adopts a lazy approach: an element of the powerset
domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be elimi-
nated by explicitly invoking the operator omega_reduce (), e.g., before performing the output of
a powerset element. Note that all the documented operators automatically perform Omega-reductions
on their arguments, when needed or appropriate.

1.12 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain D.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

28 CONTENTS

1.12.1 Meet and Upper Bound

Given the sets S; and Sy € Dy, the meet and upper bound operators provided by the library returns the set
9)s ({ di ®ds | dy € S1,de € So }) and Omega-reduced set union 27, (81 U S2) respectively.

1.12.2 Adding a Disjunct

Given the powerset element S € D, and the base-level element d € D, the add disjunct operator provided
by the library returns the powerset element 7, (S U {d}).

1.12.3 Collapsing a Powerset Element

If the given powerset element is not empty, then the collapse operator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.13 The Pointset Powerset Domain

The pointset powerset domain provided by the PPL is the finite powerset domain (defined in Section The
Powerset Construction) whose base-level domain D is one of the classes of semantic geometric descriptors
listed in Section Semantic Geometric Descriptors.

In addition to the operations described for the generic powerset domain in Section Operations on the Pow-
erset Construction, the PPL provides all the generic operations listed in Generic Operations on Semantic
Geometric Descriptors. Here we just describe those operations that are particular to the pointset powerset
domain.

1.13.1 Meet-Preserving Simplification

Let Si = {di,...,dn}, S2 = {c1,...,cp} and S = {s1,...,54} be Omega-reduced elements of a
pointset powerset domain over the same base-level domain. Then:

o S is powerset meet-preserving with respect to S; using context Sy if the meet of S and Ss is equal
to the meet of S; and So;

* S is a powerset simplification with respect to Sy if ¢ < m.

o S is a disjunct meet-preserving simplification with respect to Sy if, for each s € S, there exists
d; € &1 such that, for each c; € S», s is a meet-preserving enlargement and simplification of d;
using context ¢;.

The library provides a binary operator (simplify_using_context) for the pointset powerset domain
that returns a powerset which is a powerset meet-preserving, powerset simplification and disjunct meet-
preserving simplification of its first argument using the second argument as context.

Notice that, due to the powerset simplification property, in general a meet-preserving powerset simplifica-
tion is not an enlargement with respect to the ordering defined on the powerset lattice. Because of this, the
operator provided by the library is only well-defined when the base-level domain is not itself a powerset
domain.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.13 The Pointset Powerset Domain 29

1.13.2 Geometric Comparisons

Given the pointset powersets S1, So over the same base-level domain and with the same space dimension,
then we say that S geometrically covers S, if every point (in some disjunct) of Ss is also a point in a
disjunct of S;. If S geometrically covers So and So geometrically covers Sy, then we say that they are
geometrically equal.

1.13.3 Pairwise Merge

Given the pointset powerset S over a base-level semantic GD domain D, then the pairwise merge operator
takes pairs of distinct elements in S whose upper bound (denoted here by W) in D (using the PPL operator
upper_bound_assign () for D) is the same as their set-theoretical union and replaces them by their
union. This replacement is done recursively so that, for each pair ¢, d of distinct disjuncts in the result set,
we have cW d # cU d.

1.13.4 Powerset Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in [B-
GP99]. The operator BGP99_extrapolation_assign is made parametric by allowing for the speci-
fication of any PPL extrapolation operator for the base-level domain. Note that, even when the extrapolation
operator for the base-level domain D is known to be a widening on D, the BGP99_extrapolation-
_assign operator cannot guarantee the convergence of the iteration sequence in a finite number of steps
(for a counter-example, see [BHZ04]).

1.13.5 Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the pointset pow-
erset domain. In particular, this version of the library implements an instance of the certificate-based
widening framework proposed in [BHZO03b].

A finite convergence certificate for an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain D, together with the corresponding convergence certificate, the BHZ03 framework is able to lift
this widening on D to a widening on the pointset powerset domain; ensuring convergence in a finite number
of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operator BHZ03_widening_assign<Certificate,
Widening> which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the upper bound operator for the base-level domain is tried; second, the BG-
P99 extrapolation operator is tried, possibly applying pairwise merging. If both heuristics fail to converge
according to the convergence certificate, then an attempt is made to apply the base-level widening to the
upper bound of the two arguments, possibly improving the result obtained by means of the difference oper-
ator for the base-level domain. For more details and a justification of the overall approach, see [BHZ03b]
and [BHZ04].

The library provides several convergence certificates. Note that, for the domain of Polyhedra, while Parma-
_Polyhedra_Library::BHRZ03_Certificate the "BHRZ03_Certificate" is compatible with both the BHR-
703 and the H79 widenings, H79_Certificate is only compatible with the latter. Note that using different
certificates will change the results obtained, even when using the same base-level widening operator. It is
also worth stressing that it is up to the user to see that the widening operator is actually compatible with

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

30 CONTENTS

a given convergence certificate. If such a requirement is not met, then an extrapolation operator will be
obtained.

1.14 Analysis of floating point computations

This section describes the PPL abstract domains that are used for approximating floating point computa-
tions in software analysis. We follow the approch described in [Min04] and more detailedly in [Min05].
We will denote by V the set of all floating point variables in the analyzed program. We will also denote by
F, the set of floating point numbers in the format used by the analyzer (that is, the machine running the
PPL) and by F, the set of floating point numbers in the format used by the machine that is expected to run
the analyzed program. Recall that floating point numbers include the infinities —oo and +oo.

1.14.1 Linear forms with interval coefficients

Generic concrete floating point expressions on IF, are represented by the Floating_Point_Expression
abstract class. Its concrete derivate classes are:

* Cast_Floating_Point_Expression,
* Constant_Floating Point_Expression,
* Variable_Floating_ Point_Expression,

* Opposite_Floating_Point_Expression, thatis the negation (unary minus) of a floating
point expression,

* Sum_Floating_Point_Expression, thatis the sum of two floating point expressions,

e Difference_Floating_Point_Expression , that is the difference of two floating point
expressions,

e Multiplication_Floating_Point_Expression, thatisthe product of two floating point
expressions, and

e Division_Floating_Point_Expression, thatis the division of two floating point expres-
sions.

The set of all the possible values in I, of a floating point expression at a given program point in a given
abstract store can be overapproximated by a linear form with interval coefficients, that is a linear expression
of this kind:

i+ i,

veEVY

where all v are free floating point variables and ¢ and all 7, are elements of I, defined as the set of all
intervals with boundaries in F,. This operation is called linearization and is performed by the method
linearize of floating point expression classes.

Even though the intervals may be open, we will always use closed intervals in the documentation for the
sake of simplicity, with the exception of unbounded intervals that have oo boundaries. We denote the set
of all linear forms on F, by L,,.

The Linear_Form class provides common algebraic operations on linear forms: you can add or subtract
two linear forms, and multiply or divide a linear form by a scalar. We are writing only about interval linear

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.14 Analysis of floating point computations 31

forms in this section, so our scalars will always be intervals with floating point boundaries. The operations
on interval linear forms are intuitively defined as follows:

<i+2z’vv> i (z +> i, v) ot)+ > (i oF i) v,

veV veV veV

(z‘+Zivv> 5# (z +> i, v) iotd)+ > (ot i),

veV veV veV

i <¢’+ Zz‘;v> Elieti)+ Y (ie*i)v

veV veV

<z+sz> i (ot i)+) (i 0®)

veV

Where &%, 0%, ®%, and ©* are the corresponding operations on intervals. Note that these operations
always round the interval’s lower bound towards —oo and the upper bound towards 400 in order to obtain
a correct overapproximation.

A (composite) floating point abstract store is used to associate each floating point variable with its currently
known approximation. The store is composed by two parts:

s an interval abstract store p*:V — I, associating each variable with its current approximating
interval, and

* a linear form abstract store pfé: V — L, associating each variable with its current approximating
linear form.

An interval abstract store is represented by a Box with floating point boundaries, while a linear form
abstract store is a map of the Standard Template Library. The 1inearize method requires both stores as
its arguments. Please see the documentation of floating point expression classes for more information.

The linearization of a floating point expression e in the composite abstract store [[p#, pﬂ] will be denoted

by (e [[p#7 pﬂ] . There are two ways a linearization attempt can fail:

* whenever an interval boundary overflows to +oo or —oo, and

* when we try to divide by an interval that contains 0.

1.14.2 Use of other abstract domains for floating point analysis

Three of the other abstract domains of the PPL (BD_Shape , Octagonal_Shape, and Polyhedron
) provide a few optimized methods to be used in the analysis of floating point computations. They are rec-
ognized by the fact that they take interval linear forms and/or an interval abstract stores as their parameters.

Please see the methods’ documentation for more information.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

32 CONTENTS

1.15 Using the Library
1.15.1 A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: a lazy version and
an eager version, the latter having the operator name ending with _and_minimize. In principle, only
the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation might still make sense is when the well-known fail-first
principle comes into play. For instance, if you have to compute the intersection of several polyhedra
and you strongly suspect that the result will become empty after a few of these intersections, then you may
obtain a better performance by calling the eager version of the intersection operator, since the minimization
process also enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving
the calls of the lazy operator with explicit emptiness checks.

Warning

For the reasons mentioned above, starting from version 0.10 of the library, the usage of the eager ver-
sions (i.e., the ones having a name ending with _and_minimize) of these operators is deprecated,
this is in preparation of their complete removal, which will occur starting from version 0.11.

1.15.2 On Pointset_Powerset and Partially_Reduced_Product Domains: A Warning

For future versions of the PPL library all practical instantiations for the disjuncts for a pointset_powerset
and component domains for the partially_reduced_product domains will be fully supported. However, for
version 0.10, these compound domains should not themselves occur as one of their argument domains.
Therefore their use comes with the following warning.

Warning

The Pointset_Powerset<PSET>andPartially_Reduced_Product<D1l, D2, R>should
only be used with the following instantiations for the disjunct domain template PSET and compo-
nent domain templates D1 and D2: C_Polyhedron, NNC_Polyhedron, Grid, Octagonal_-
Shape<T>, BD_Shape<T>, Box<T>.

1.15.3 On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to — i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declared virtual). In practice, this restriction means that the
library types should not be used as public base classes to be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by using containment instead of inheritance; even
when there is the need to override a prot ected method, non-public inheritance should suffice.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

1.16 Bibliography 33

1.15.4 On Const-Correctness: A Warning about the Use of References and lterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.

const Generator_System& gs = ph.generators();

Generator_System::const_iterator i = gs.begin();

for (Generator_System::const_iterator gs_end = gs.end(); i != gs_end; ++i)
Lf (i->is_point())

L = ’
const Generator& p = *i;

// Get the constraints of ‘ph’.

const Constraint_System& cs = ph.constraints();

// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.

cout << p.divisor() << endl; // Undefined behavior!
++i; // Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iterator i and the reference p. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.16 Bibliography

[Anc91] C. Ancourt. Génération automatique de codes de transfert pour multiprocesseurs a mémoires
locales. PhD thesis, Université de Paris VI, Paris, France, March 1991.

[BAO5] J. M. Bjorndalen and O. Anshus. Lessons learned in benchmarking - Floating point benchmarks-
: Can you trust them? In Proceedings of the Norsk informatikkonferanse 2005 (NIK 2005), pages
89-100, Bergen, Norway, 2005. Tapir Akademisk Forlag.

[Bag97] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Diparti-
mento di Informatica, Universita di Pisa, Pisa, Italy, March 1997. Printed as Report TD-1/97.

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languages. Science of Computer Programming, 30(1-2):119-155, 1998.

[BCC+ 02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Design and implementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In T. . Mogensen, D. A. Schmidt, and I. Hal Sudborough, editors,
The Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

34 CONTENTS

Jones [on occasion of his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages
85-108. Springer-Verlag, Berlin, 2002.

[BDH+ 05] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A linear domain for
analyzing the distribution of numerical values. Report 2005.06, School of Computing, University of
Leeds, UK, 2005.

[BDHT 06] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A practical tool for
analyzing the distribution of numerical values, 2006. Available at http://www.comp. leeds. -
ac.uk/hill/Papers/papers.html.

[BDHT 07] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A domain for
analyzing the distribution of numerical values. In G. Puebla, editor, Logic-based Program Synthesis
and Transformation, 16th International Symposium, volume 4407 of Lecture Notes in Computer
Science, pages 219-235, Venice, Italy, 2007. Springer-Verlag, Berlin.

[BFT00] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Report AUTO00-13, Automatic Control Laboratory, ETHZ, Zurich, Switzerland, 2000.

[BFT01] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Computational Geometry: Theory and Applications, 18(3):141-154, 2001.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results. ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

[BHMZ04] R.Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-relational
numeric abstractions. Report arXiv:cs.PL/0412043, 2004. Extended abstract. Contribution
to the International workshop on “Numerical & Symbolic Abstract Domains” (NSAD’05, Paris, Jan-
uary 21, 2005). Availableathttp://arxiv.org/andhttp://bugseng.com/products/ppl/.

[BHMZ05a] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Universita di Parma,
Italy, 2005. Available at http://www.cs.unipr.it/Publications/.

[BHMZO05b] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. In C. Hankin and 1. Siveroni, editors, Static Analysis: Proceedings
of the 12th International Symposium, volume 3672 of Lecture Notes in Computer Science, pages
3-18, London, UK, 2005. Springer-Verlag, Berlin.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the 10th International Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRZO03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di Parma, Italy, 2003. Available
athttp://www.cs.unipr.it/Publications/.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Science of Computer Programming, 58(1-2):28-56, 2005.

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Universita di Parma,
Italy, 2002. Available at http://www.cs.unipr.it/Publications/.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.comp.leeds.ac.uk/hill/Papers/papers.html
http://www.comp.leeds.ac.uk/hill/Papers/papers.html
http://arxiv.org/
http://bugseng.com/products/ppl/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://bugseng.com

1.16 Bibliography 35

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors, Proceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informatica.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proceedings of
the 3rd Workshop on Automated Verification of Critical Systems, pages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editors, Verification, Model Checking and Abstract Interpretation: Proceed-
ings of the 5th International Conference (VM CAI 2004), volume 2937 of Lecture Notes in Computer
Science, pages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R.Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Quaderno
349, Dipartimento di Matematica, Universita di Parma, Italy, 2004. Available at http://www. -
cs.unipr.it/Publications/.

[BHZ05] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra and the
double description method. Formal Aspects of Computing, 17(2):222-257, 2005.

[BHZ06a] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Quaderno 457, Dipartimento di Matematica, Universita di Parma, Italy, 2006. Available at http—
://www.cs.unipr.it/Publications/. AlsopublishedasarXiv:cs.MS/0612085, avail-
able from http://arxiv.org/.

[BHZ06b] R.Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 8(4/5):449-466, 2006. In the printed version of this article, all the
figures have been improperly printed (rendering them useless). See [BHZ07c].

[BHZ07a] R.Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the anal-
ysis and verification of hardware and software systems. Quaderno 458, Dipartimento di Matematica,
Universita di Parma, Italy, 2007. Available at http://www.cs.unipr.it/Publications/.
Also published as arXiv:cs.CG/0701122, available from http://arxiv.org/.

[BHZ07b] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for inte-
ger octagonal constraints. Quaderno 467, Dipartimento di Matematica, Universita di Parma, Italy,
2007. Available at http://www.cs.unipr.it/Publications/. Also published as ar—
Xiv:0705.4618v2 [cs.DS], available from http://arxiv.org/.

[BHZ07c] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 9(3/4):413-414, 2007. Erratum to [BHZ06b] containing all the figures
properly printed.

[BHZ08a] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for integer oc-
tagonal constraints. In F. Logozzo, D. Peled, and L. Zuck, editors, Verification, Model Checking and
Abstract Interpretation: Proceedings of the 9th International Conference (VMCAI 2008), volume
4905 of Lecture Notes in Computer Science, pages 8-21, San Francisco, USA, 2008. Springer--
Verlag, Berlin.

[BHZ08b] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1-2):3-21, 2008.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://bugseng.com

36 CONTENTS

[BHZ09a] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the
analysis and verification of hardware and software systems. Theoretical Computer Science, 410(46)-
:4672-4691, 2009.

[BHZ09b] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and
other numerical abstractions. Quaderno 492, Dipartimento di Matematica, Universita di Parma, Italy,
2009. Available at http://www.cs.unipr.it/Publications/. A corrected and improved
version (corrected an error in the statement of condition (3) of Theorem 3.6, typos corrected in
statement and proof of Theorem 6.8) has been published in [BHZ09c].

[BHZ09c] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and
other numerical abstractions. Report arXiv:cs.CG/0904.1783, 2009. Available at http—
://arxiv.org/ and http://bugseng.com/products/ppl/.

[BHZ09d] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric abstractions:
Improved algorithms and proofs of correctness. Formal Methods in System Design, 35(3):279-323,
20009.

[BHZ10] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and other
numerical abstractions. Computational Geometry: Theory and Applications, 43(5):453-473, 2010.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 of Lecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer--
Verlag, Berlin.

[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in par-
allelism enhancing transformations. In B. Knobe, editor, Proceedings of the ACM SIGPLAN’89
Conference on Programming Language Design and Implementation (PLDI), volume 24(7) of ACM
SIGPLAN Notices, pages 41-53, Portland, Oregon, USA, 1989. ACM Press.

[BMPZ10] R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. The automatic synthesis of linear
ranking functions: The complete unabridged version. Quaderno 498, Dipartimento di Matematica,
Universita di Parma, Italy, 2010. Superseded by [BMPZ12a].

[BMPZ12a] R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. The automatic synthesis of linear
ranking functions: The complete unabridged version. Report arXiv:cs.PL/1004.0944v2,
2012. Available at http://arxiv.org/ and http://bugseng.com/products/ppl/.
Improved version of [BMPZ10].

[BMPZ12b] R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the automatic synthe-
sis of linear ranking functions. Information and Computation, 215:47-67, 2012.

[BRZHO02a] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, Static Analysis-
: Proceedings of the 9th International Symposium, volume 2477 of Lecture Notes in Computer
Science, pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO02b] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Universita di Parma, Italy,
2002. See also [BRZHO02c]. Available at http://www.cs.unipr.it/Publications/.

[BRZHO02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available at http://www.cs.unipr.it/Publications/, 2002. See [BRZHO2b].

[CC76] P.Cousot and R. Cousot. Static determination of dynamic properties of programs. In B. Robinet,
editor, Proceedings of the Second International Symposium on Programming, pages 106-130, Paris,
France, 1976. Dunod, Paris, France.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://arxiv.org/
http://bugseng.com/products/ppl/
http://arxiv.org/
http://bugseng.com/products/ppl/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://bugseng.com

1.16 Bibliography 37

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Programming Languages, pages 269-282, San
Antonio, TX, USA, 1979. ACM Press.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors, Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 of Lecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear equations. U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4)-
:151-158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics, 5(2)-
:228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FCB07] P. Feautrier, J.-F. Collard, and C. Bastoul. PIP/PipLib: A Solver for Parametric Integer Pro-
gramming Problems, 5.0 edition, July 2007. Distributed with PIP/PipLib 1.4.0.

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22(3):243-268,
1988.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
Y. Manoussakis, editors, Combinatorics and Computer Science, S8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 of Lecture Notes
in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral computation FAQ. Swiss Federal Institute of Technology, Lausanne and
Zurich, Switzerland, availableat ht tp: //www.ifor.math.ethz.ch/~fukuda/polyfag/polyfaq. -
html, 1998.

[GDD"’ 04] D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 of Lecture Notes in
Computer Science, pages 512-529, Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[GJ00] E. Gawrilow and M. Joswig. polymake: A framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors, Polytopes - Combinatorics and Computation, pages 43-74.
Birkh&user, 2000.

[GJO01] E. Gawrilow and M. Joswig. polymake: An approach to modular software design in computa-
tional geometry. In Proceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231, Medford, MA, USA, 2001. ACM.

[GR77] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical Proram-
ming, 12(1):361-371, 1977.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://bugseng.com

38 CONTENTS

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables of a program. In
S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings of the International Joint
Conference on Theory and Practice of Software Development, Volume 1: Colloquium on Trees in
Algebra and Programming (CAAP’91), volume 493 of Lecture Notes in Computer Science, pages
169-192, Brighton, UK, 1991. Springer-Verlag, Berlin.

[Gra97] P. Granger. Static analyses of congruence properties on rational numbers (extended abstract). In
P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International Symposium, volume
1302 of Lecture Notes in Computer Science, pages 278-292, Paris, France, 1997. Springer-Verlag,
Berlin.

[Hal79] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’un Programme. These de 3e¢me cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, Computer
Aided Verification: Proceedings of the 5th International Conference (CAV’93), volume 697 of Lec-
ture Notes in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HHL90] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence analysis using data access descrip-
tors. Technical Report 945, Department of Computer Science, University of Wisconsin, Madison,
1990.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLWY94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne 830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HMT71] L. Henkin,J. D. Monk, and A. Tarski. Cylindric Algebras: Part I. North-Holland, Amsterdam,
1971.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor, Static Analysis: Proceedings of the Ist Inter-
national Symposium, volume 864 of Lecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

[HPWTO01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. 1EEE
Computer Society Press, 2001.

[Jea02] B.Jeannet. Convex Polyhedra Library, release 1.1.3c edition, March 2002. Documentation of the
“New Polka” library.

[JMSY94] J. Jaffar, M. J. Mabher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In A. Borning,
editor, Principles and Practice of Constraint Programming: Proceedings of the Second International
Workshop, volume 874 of Lecture Notes in Computer Science, pages 86-94, Rosario, Orcas Island,
Washington, USA, 1994. Springer-Verlag, Berlin.

[KBB* 06] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of
a polyhedron is hard. Discrete and Computational Geometry, 2006. Invited contribution.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

1.16 Bibliography 39

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities. American Math-
ematical Monthly, 63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at http—
://icps.u-strasbg.fr/~loechner/polylib/, March 1999. Declares itself to be a con-
tinuation of [Wil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. International Journal
of Parallel Programming, 25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercomputing, pages 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy. Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids. These d’informatique, Ecole Polytechnique, Palaiseau, France, December 1993.

[Min0la] A. Miné. A new numerical abstract domain based on difference-bound matrices. In O. Danvy
and A. Filinski, editors, Proceedings of the 2nd Symposium on Programs as Data Objects (PADO
2001), volume 2053 of Lecture Notes in Computer Science, pages 155-172, Aarhus, Denmark, 2001.
Springer-Verlag, Berlin.

[Min01b] A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE’01), pages 310-319, Stuttgart, Germany, 2001. IEEE Computer
Society Press.

[Min02] A. Miné. A few graph-based relational numerical abstract domains. In M. V. Hermenegildo and
G. Puebla, editors, Static Analysis: Proceedings of the 9th International Symposium, volume 2477 of
Lecture Notes in Computer Science, pages 117-132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[Min04] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In
D. Schmidt, editor, Programming Languages and Systems: Proceedings of the 13th European Sym-
posium on Programming, volume 2986 of Lecture Notes in Computer Science, pages 3-17, Barcelona,
Spain, 2004. Springer-Verlag, Berlin.

[Min05] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, Ecole Polytechnique,
Paris, France, March 2005.

[MRTTS53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games - Volume II, num-
ber 28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NFO1] T. Nakanishi and A. Fukuda. Modulo interval arithmetic and its application to program analysis.
Transactions of Information Processing Society of Japan, 42(4):829-837, 2001.

[NJPF99] T. Nakanishi, K. Joe, C. D. Polychronopoulos, and A. Fukuda. The modulo interval: A sim-
ple and practical representation for program analysis. In Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques, pages 91-96, Newport Beach,
California, USA, 1999. IEEE Computer Society.

[NO77] G. Nelson and D. C. Oppen. Fast decision algorithms based on Union and Find. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science (FOCS’77), pages 114-119,
Providence, RI, USA, 1977. IEEE Computer Society Press. The journal version of this paper is
[NOS8O].

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://icps.u-strasbg.fr/~loechner/polylib/
http://icps.u-strasbg.fr/~loechner/polylib/
http://bugseng.com

40 CONTENTS

[NO80] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal of
the ACM, 27(2):356-364, 1980. An earlier version of this paper is [NO77].

[NROO] S.P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication interne 1330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G.L.Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Pra77] V. R. Pratt. Two easy theories whose combination is hard. Memo sent to Nelson and Oppen
concerning a preprint of their paper [NO77], September 1977.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, second edition, 1998.

[QRRI96] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical Report
1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

[QRRYI7] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a canonic repre-
sentation. Parallel Processing Letters, 7(2):181-194, 1997.

[QRWO00] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient nested loops from poly-
hedra. International Journal of Parallel Programming, 28(5):469-498, 2000.

[RBLO6] T. W. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level
code. In J. Hatcliff and F. Tip, editors, Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages 100-111, Charleston, South Car-
olina, USA, 2006. ACM Press.

[Ric02] E. Ricci. Rappresentazione e manipolazione di poliedri convessi per 1’analisi e la verifica di
programmi. Laurea dissertation, University of Parma, Parma, Italy, July 2002. In Italian.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sho81] R. E. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769-779, 1981.

[SKO07] A. Simon and A. King. Taming the wrapping of integer arithmetic. In H. Riis Nielson and G. Fil¢,
editors, Static Analysis: Proceedings of the 14th International Symposium, volume 4634 of Lecture
Notes in Computer Science, pages 121-136, Kongens Lyngby, Denmark, 2007. Springer-Verlag,
Berlin.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints. Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SS07a] R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with circular linear
progressions. In Proceedings of the 5th IEEE/ACM International Conference on Formal Methods
and Models for Co-Design (MEMOCODE 2007), pages 39-48, Nice, France, 2007. IEEE Computer
Society Press.

[SS07b] R. Sen and Y. N. Srikant. Executable analysis with circular linear progressions. Technical Re-
port IISc-CSA-TR-2007-3, Department of Computer Science and Automation, Indian Institute of
Science, Bangalore, India, 2007.

[SW70] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[War03] H. S. Warren, Jr. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

2 GNU General Public License 41

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii Mathematici Helvetici, 7-
:290-306, 1935. English translation in [Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor, Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from [Wey35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISA Publication interne 785, Rennes,
France, 1993.

2 GNU General Public License

Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program—to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://fsf.org/
http://bugseng.com

42 CONTENTS

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

2 GNU General Public License 43

control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which
are not part of the work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4, Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

44 CONTENTS

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

* b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

* ¢) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

* d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

* a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

* b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

* ¢) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

 d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

2 GNU General Public License 45

be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

* ¢) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as
a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must
be in a format that is publicly documented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

46 CONTENTS

in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

¢ a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

* b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

* ¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

* d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

¢ ¢) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

* f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

2 GNU General Public License 47

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

48 CONTENTS

edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

2 GNU General Public License 49

can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLIC-
ABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIE-
D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF D-
ATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

50 CONTENTS

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) vyear name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, your program’s commands might be different; for a GUI interface, you would use an
“about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License. But first, please read http://www.gnu.org/philosophy/why-not-1gpl.html.

3 GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, TUSA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://bugseng.com

3 GNU Free Documentation License 51

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates X YZ in another language. (Here XYZ stands for

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

52 CONTENTS

a specific section name mentioned below, such as "Acknowledgements", "Dedications"”, "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

» B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

3 GNU Free Documentation License 53

Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

« C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
* D. Preserve all the copyright notices of the Document.
* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

* H. Include an unaltered copy of this License.

* L. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

* J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

* M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

* N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

¢ O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

54 CONTENTS

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

4 Module Index 55

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

4 Module Index

4.1 Modules

Here is a list of all modules:

C++ Language Interface 65

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://www.gnu.org/copyleft/
http://bugseng.com

56 CONTENTS
5 Namespace Index
5.1 Namespace List
Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra_Library
The entire library is confined to this namespace 84
Parma_Polyhedra_Library::10_Operators
All input/output operators are confined to this namespace 93
std
The standard C++ namespace 94
6 Class Index
6.1 Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
Parma_Polyhedra_Library::Approximable_Reference 95
Parma_Polyhedra_Library::Approximable_Reference_Common< Target > 95
Parma_Polyhedra_Library::BD_Shape< T > 98
Parma_Polyhedra_Library::BHRZ03_Certificate 133
Parma_Polyhedra_Library::Binary_Operator 135
Parma_Polyhedra_Library::Binary_Operator_Common< Target > 135
Parma_Polyhedra_Library::Box< ITV > 135
Parma_Polyhedra_Library::Cast_Operator 176
Parma_Polyhedra_Library::Cast_Operator_Common< Target > 177
Parma_Polyhedra_Library::Checked_Number< T, Policy > 177
Parma_Polyhedra_Library::BHRZ03_Certificate::Compare 194
Parma_Polyhedra_Library::H79_Certificate::Compare 194
Parma_Polyhedra_Library::Grid_Certificate::Compare 195
Parma_Polyhedra_Library::Variable::Compare 195
Parma_Polyhedra_Library::Concrete_Expression 195
Parma_Polyhedra_Library::Concrete_Expression_Common< Target > 202
Parma_Polyhedra_Library::Concrete_Expression_Type 202

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

6.1 Class Hierarchy 57
Parma_Polyhedra_Library::Congruence 204
Parma_Polyhedra_Library::Congruence_System 212
Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > 217
Parma_Polyhedra_Library::CO_Tree::const_iterator 219
Parma_Polyhedra_Library::Linear_Expression_Impl< Row >::const_iterator 222
Parma_Polyhedra_Library::Linear_Expression::const_iterator 224
Parma_Polyhedra_Library::Congruence_System::const_iterator 226
Parma_Polyhedra_Library::MIP_Problem::const_iterator 227
Parma_Polyhedra_Library::Grid_Generator_System::const_iterator 228
Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface 229
Parma_Polyhedra_Library::Constraint 234
Parma_Polyhedra_Library::Constraint_System 245
Parma_Polyhedra_Library::Constraint_System_const_iterator 248
Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > 249
Parma_Polyhedra_Library::Determinate< PSET > 250
Parma_Polyhedra_Library::Domain_Product< D1, D2 > 259
Parma_Polyhedra_Library::Implementation::Watchdog::Doubly_Linked_Object 259

Parma_Polyhedra_Library::Implementation::Watchdog::EList< T > 260
Parma_Polyhedra_Library::Implementation::Watchdog::Pending_Element< Threshold

> 460

Parma_Polyhedra_Library::Implementation::Watchdog::EList_Iterator< T > 262

Parma_Polyhedra_Library::Floating Point_Constant 263

Parma_Polyhedra_Library::Floating_Point_Constant_Common< Target > 263

Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format > 264

Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP-

_Format >

Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_Type,

FP_Format >

Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type,

FP_Format >

Parma_Polyhedra_Library::Division_Floating Point_Expression< FP_Interval_Type, F-

P_Format >

174

231

252

256

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

58 CONTENTS

Parma_Polyhedra_Library::Multiplication_Floating Point_Expression< FP_Interval-
_Type, FP_Format >

Parma_Polyhedra_Library::Opposite_Floating Point_Expression< FP_Interval_Type,
FP_Format >

Parma_Polyhedra_Library::Sum_Floating Point_Expression< FP_Interval_Type, FP-
_Format >

Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type,
FP_Format >

Parma_Polyhedra_Library::FP_Oracle< Target, FP_Interval_Type >
Parma_Polyhedra_Library::Generator
Parma_Polyhedra_Library::Generator_System
Parma_Polyhedra_Library::Generator_System_const_iterator
Parma_Polyhedra_Library::GMP_Integer
Parma_Polyhedra_Library::Grid
Parma_Polyhedra_Library::Grid_Certificate
Parma_Polyhedra_Library::Grid_Generator
Parma_Polyhedra_Library::Grid_Generator_System
Parma_Polyhedra_Library::H79_Certificate

Parma_Polyhedra_Library::Implementation::Watchdog::Handler

386

431

556

564

269

271

286

290

291

294

325

326

336

340

341

Parma_Polyhedra_Library::Implementation::Watchdog::Handler_Flag< Flag Base, Flag

>

Parma_Polyhedra_Library::Implementation::Watchdog::Handler_Function
Parma_Polyhedra_Library::Integer_Constant
Parma_Polyhedra_Library::Integer_Constant_Common< Target >
Parma_Polyhedra_Library::Interval< Boundary, Info >
Parma_Polyhedra_Library::CO_Tree::iterator
Parma_Polyhedra_Library::Linear_Expression

Parma_Polyhedra_Library::PIP_Tree_Node::Artificial Parameter
Parma_Polyhedra_Library::Linear_Form< C >
Parma_Polyhedra_Library::MIP_Problem
Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints

Parma_Polyhedra_Library::No_Reduction< D1, D2 >

342

344

344

345

345

349

352

95

367

378

395

396

@ The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

7 Class Index 59

Parma_Polyhedra_Library::Octagonal_Shape< T > 396
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > 434
Parma_Polyhedra_Library::Implementation::Watchdog::Pending_List< Traits > 462
Parma_Polyhedra_Library::PIP_Problem 464
Parma_Polyhedra_Library::PIP_Tree_Node 479
Parma_Polyhedra_Library::PIP_Decision_Node 463
Parma_Polyhedra_Library::PIP_Solution_Node 476
Parma_Polyhedra_Library::Poly_Con_Relation 510
Parma_Polyhedra_Library::Poly_Gen_Relation 512
Parma_Polyhedra_Library::Polyhedron 513
Parma_Polyhedra_Library::C_Polyhedron 168
Parma_Polyhedra_Library::NNC_Polyhedron 390
Parma_Polyhedra_Library::Powerset< D > 547
Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PSET
> > 547
Parma_Polyhedra_Library::Pointset_Powerset< PSET > 484
Parma_Polyhedra_Library::Recycle_Input 554
Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 > 554
Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > 555
Parma_Polyhedra_Library::Threshold_Watcher< Traits > 559
Parma_Polyhedra_Library::Throwable 559
Parma_Polyhedra_Library::Implementation::Watchdog::Time 560
Parma_Polyhedra_Library::Unary_Operator 561
Parma_Polyhedra_Library::Unary_Operator_Common< Target > 561
Parma_Polyhedra_Library::Variable 561
Parma_Polyhedra_Library::Variables_Set 567
Parma_Polyhedra_Library::Watchdog 568

7 Class Index

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. @

http://bugseng.com

60 CONTENTS

7.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::Approximable_Reference
A concrete expression representing a reference to some approximable 95

Parma_Polyhedra_Library::Approximable_Reference_Common< Target >
Base class for references to some approximable 95

Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter
Artificial parameters in PIP solution trees 95

Parma_Polyhedra_Library::BD_Shape< T >
A bounded difference shape 98

Parma_Polyhedra_Library::BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator 133

Parma_Polyhedra_Library::Binary_Operator
A binary operator applied to two concrete expressions 135

Parma_Polyhedra_Library::Binary_Operator_Common< Target >
Base class for binary operator applied to two concrete expressions 135

Parma_Polyhedra_Library::Box< ITV >
A not necessarily closed, iso-oriented hyperrectangle 135

Parma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron 168

Parma_Polyhedra_Library::Cast_Floating Point_Expression< FP_Interval_Type, FP_Format
>
A generic Cast Floating Point Expression 174

Parma_Polyhedra_Library::Cast_Operator
A cast operator converting one concrete expression to some type 176

Parma_Polyhedra_Library::Cast_Operator_Common< Target >
Base class for cast operator concrete expressions 177

Parma_Polyhedra_Library::Checked_Number< T, Policy >
A wrapper for numeric types implementing a given policy 177

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare
A total ordering on BHRZ03 certificates 194

Parma_Polyhedra_Library::H79_Certificate::Compare
A total ordering on H79 certificates 194

Parma_Polyhedra_Library::Grid_Certificate::Compare
A total ordering on Grid certificates 195

Parma_Polyhedra_Library::Variable::Compare
Binary predicate defining the total ordering on variables 195

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

7.1 Class List 61

Parma_Polyhedra_Library::Concrete_Expression

The base class of all concrete expressions 195
Parma_Polyhedra_Library::Concrete_Expression_Common< Target >

Base class for all concrete expressions 202
Parma_Polyhedra_Library::Concrete_Expression_Type

The type of a concrete expression 202
Parma_Polyhedra_Library::Congruence

A linear congruence 204
Parma_Polyhedra_Library::Congruence_System

A system of congruences 212
Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 >

This class provides the reduction method for the Congruences_Product domain 217
Parma_Polyhedra_Library::CO_Tree::const_iterator

A const iterator on the tree elements, ordered by key 219
Parma_Polyhedra_Library::Linear_Expression_Impl< Row >::const_iterator 222
Parma_Polyhedra_Library::Linear_Expression::const_iterator 224
Parma_Polyhedra_Library::Congruence_System::const_iterator

An iterator over a system of congruences 226
Parma_Polyhedra_Library::MIP_Problem::const_iterator

A read-only iterator on the constraints defining the feasible region 227
Parma_Polyhedra_Library::Grid_Generator_System::const_iterator

An iterator over a system of grid generators 228
Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface 229
Parma_Polyhedra_Library::Constant_Floating Point_Expression< FP_Interval_Type, F-

P_Format >

A generic Constant Floating Point Expression 231
Parma_Polyhedra_Library::Constraint

A linear equality or inequality 234
Parma_Polyhedra_Library::Constraint_System

A system of constraints 245
Parma_Polyhedra_Library::Constraint_System_const_iterator

An iterator over a system of constraints 248
Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >

This class provides the reduction method for the Constraints_Product domain 249
Parma_Polyhedra_Library::Determinate< PSET >

A wrapper for PPL pointsets, providing them with a determinate constraint system in-

terface, as defined in [Bag98] 250

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

CONTENTS

Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type, F-
P_Format >
A generic Difference Floating Point Expression

Parma_Polyhedra_Library::Division_Floating Point_Expression< FP_Interval_Type, FP-
_Format >
A generic Division Floating Point Expression

Parma_Polyhedra_Library::Domain_Product< D1, D2 >
This class is temporary and will be removed when template typedefs will be supported
in C++

Parma_Polyhedra_Library::Implementation::Watchdog::Doubly_Linked_Object
A (base) class for doubly linked objects

Parma_Polyhedra_Library::Implementation::Watchdog::EList< T >
A simple kind of embedded list (i.e., a doubly linked objects where the links are embed-
ded in the objects themselves)

Parma_Polyhedra_Library::Implementation::Watchdog::EList_Iterator< T >
A class providing iterators for embedded lists

Parma_Polyhedra_Library::Floating Point_Constant
A floating-point constant concrete expression

Parma_Polyhedra_Library::Floating Point_Constant_Common< Target >
Base class for floating-point constant concrete expression

Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >
A floating point expression on a given format

Parma_Polyhedra_Library::FP_Oracle< Target, FP_Interval_Type >
An abstract class to be implemented by an external analyzer such as ECLAIR in order
to provide to the PPL the necessary information for performing the analysis of floating
point computations

Parma_Polyhedra_Library::Generator
A line, ray, point or closure point

Parma_Polyhedra_Library::Generator_System
A system of generators

Parma_Polyhedra_Library::Generator_System_const_iterator
An iterator over a system of generators

Parma_Polyhedra_Library::GMP_Integer
Unbounded integers as provided by the GMP library

Parma_Polyhedra_Library::Grid
A grid

Parma_Polyhedra_Library::Grid_Certificate
The convergence certificate for the Grid widening operator

Parma_Polyhedra_Library::Grid_Generator
A grid line, parameter or grid point

252

256

259

259

260

262

263

263

264

269

271

286

290

291

294

325

326

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

7.1 Class List 63

Parma_Polyhedra_Library::Grid_Generator_System
A system of grid generators 336

Parma_Polyhedra_Library::H79_Certificate
A convergence certificate for the H79 widening operator 340

Parma_Polyhedra_Library::Implementation:: Watchdog::Handler
Abstract base class for handlers of the watchdog events 341

Parma_Polyhedra_Library::Implementation::Watchdog::Handler_Flag< Flag_Base, Flag
>
A kind of Handler that installs a flag onto a flag-holder 342

Parma_Polyhedra_Library::Implementation:: Watchdog::Handler_Function
A kind of Handler calling a given function 344

Parma_Polyhedra_Library::Integer_Constant
An integer constant concrete expression 344

Parma_Polyhedra_Library::Integer_Constant_Common< Target >
Base class for integer constant concrete expressions 345

Parma_Polyhedra_Library::Interval< Boundary, Info >
A generic, not necessarily closed, possibly restricted interval 345

Parma_Polyhedra_Library::CO_Tree::iterator
An iterator on the tree elements, ordered by key 349

Parma_Polyhedra_Library::Linear_Expression
A linear expression 352

Parma_Polyhedra_Library::Linear_Form< C >
A linear form with interval coefficients 367

Parma_Polyhedra_Library::MIP_Problem

A Mixed Integer (linear) Programming problem 378
Parma_Polyhedra_Library::Multiplication_Floating Point_Expression< FP_Interval_Type,

FP_Format >

A generic Multiplication Floating Point Expression 386

Parma_Polyhedra_Library::NNC_Polyhedron
A not necessarily closed convex polyhedron 390

Parma_Polyhedra_Library::PIP_Solution_Node::No_Constraints
A tag type to select the alternative copy constructor 395

Parma_Polyhedra_Library::No_Reduction< D1, D2 >
This class provides the reduction method for the Direct_Product domain 396

Parma_Polyhedra_Library::Octagonal_Shape< T >

An octagonal shape 396
Parma_Polyhedra_Library::Opposite_Floating Point_Expression< FP_Interval_Type, F-

P_Format >

A generic Opposite Floating Point Expression 431

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

64 CONTENTS

Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >
The partially reduced product of two abstractions 434

Parma_Polyhedra_Library::Implementation::Watchdog::Pending_Element< Threshold >
A class for pending watchdog events with embedded links 460

Parma_Polyhedra_Library::Implementation::Watchdog::Pending_List< Traits >
An ordered list for recording pending watchdog events 462

Parma_Polyhedra_Library::PIP_Decision_Node
A tree node representing a decision in the space of solutions 463

Parma_Polyhedra_Library::PIP_Problem
A Parametric Integer (linear) Programming problem 464

Parma_Polyhedra_Library::PIP_Solution_Node
A tree node representing part of the space of solutions 476

Parma_Polyhedra_Library::PIP_Tree_Node
A node of the PIP solution tree 479

Parma_Polyhedra_Library::Pointset_Powerset< PSET >
The powerset construction instantiated on PPL pointset domains 484

Parma_Polyhedra_Library::Poly_Con_Relation
The relation between a polyhedron and a constraint 510

Parma_Polyhedra_Library::Poly_Gen_Relation
The relation between a polyhedron and a generator 512

Parma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra 513

Parma_Polyhedra_Library::Powerset< D >
The powerset construction on a base-level domain 547

Parma_Polyhedra_Library::Recycle_Input
A tag class 554

Parma_Polyhedra_Library::Shape_Preserving Reduction< D1, D2 >
This class provides the reduction method for the Shape_Preserving Product domain 554

Parma_Polyhedra_Library::Smash_Reduction< D1, D2 >
This class provides the reduction method for the Smash_Product domain 555

Parma_Polyhedra_Library::Sum_Floating_Point_Expression< FP_Interval_Type, FP_Format
>
A generic Sum Floating Point Expression 556

Parma_Polyhedra_Library::Threshold_Watcher< Traits >
A class of watchdogs controlling the exceeding of a threshold 559

Parma_Polyhedra_Library::Throwable
User objects the PPL can throw 559

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8 Module Documentation

65

Parma_Polyhedra_Library::Implementation::Watchdog::Time
A class for representing and manipulating positive time intervals

Parma_Polyhedra_Library::Unary_Operator
A unary operator applied to one concrete expression

Parma_Polyhedra_Library::Unary_Operator_Common< Target >
Base class for unary operator applied to one concrete expression

Parma_Polyhedra_Library::Variable
A dimension of the vector space

Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, F-
P_Format >
A generic Variable Floating Point Expression

Parma_Polyhedra_Library::Variables_Set
An std::set of variables’ indexes

Parma_Polyhedra_Library::Watchdog
A watchdog timer

8 Module Documentation

8.1 C++ Language Interface

The core implementation of the Parma Polyhedra Library is written in C++.

Namespaces

* namespace Parma_Polyhedra_Library::10_Operators

All input/output operators are confined to this namespace.
* namespace std

The standard C++ namespace.

Classes

* class Parma_Polyhedra_Library::Variable

A dimension of the vector space.

* struct Parma_Polyhedra_Library::Variable::Compare

Binary predicate defining the total ordering on variables.
* class Parma_Polyhedra_Library::Throwable

User objects the PPL can throw.
* struct Parma_Polyhedra_Library::Recycle_Input

A tag class.
e class Parma_Polyhedra_Library::Linear_Form< C >

A linear form with interval coefficients.

* class Parma_Polyhedra_Library::Checked_Number< T, Policy >

A wrapper for numeric types implementing a given policy.

560

561

561

561

564

567

568

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

66

CONTENTS

class Parma_Polyhedra_Library::Interval< Boundary, Info >
A generic, not necessarily closed, possibly restricted interval.
class Parma_Polyhedra_Library::Linear_Expression
A linear expression.
class Parma_Polyhedra_Library::Constraint
A linear equality or inequality.
class Parma_Polyhedra_Library::Generator
A line, ray, point or closure point.
class Parma_Polyhedra_Library::Grid_Generator
A grid line, parameter or grid point.
class Parma_Polyhedra_Library::Congruence
A linear congruence.
class Parma_Polyhedra_Library::Box< ITV >
A not necessarily closed, iso-oriented hyperrectangle.
class Parma_Polyhedra_Library::Constraint_System
A system of constraints.
class Parma_Polyhedra_Library::Constraint_System_const_iterator
An iterator over a system of constraints.
class Parma_Polyhedra_Library::Congruence_System
A system of congruences.
class Parma_Polyhedra_Library::Congruence_System::const_iterator
An iterator over a system of congruences.
class Parma_Polyhedra_Library::Poly_Con_Relation
The relation between a polyhedron and a constraint.
class Parma_Polyhedra_Library::Generator_System
A system of generators.
class Parma_Polyhedra_Library::Generator_System_const_iterator
An iterator over a system of generators.
class Parma_Polyhedra_Library::Poly_Gen_Relation
The relation between a polyhedron and a generator.
class Parma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra.
class Parma_Polyhedra_Library::MIP_Problem
A Mixed Integer (linear) Programming problem.
class Parma_Polyhedra_Library::Grid_Generator_System
A system of grid generators.
class Parma_Polyhedra_Library::Grid
A grid.
class Parma_Polyhedra_Library::BD_Shape< T >
A bounded difference shape.
class Parma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron.
class Parma_Polyhedra_Library::Octagonal_Shape< T >
An octagonal shape.
class Parma_Polyhedra_Library::PIP_Problem

A Parametric Integer (linear) Programming problem.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 67

e class Parma_Polyhedra_Library::BHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.
e class Parma_Polyhedra_Library::H79_Certificate

A convergence certificate for the H79 widening operator.
e class Parma_Polyhedra_Library::Grid_Certificate

The convergence certificate for the Grid widening operator.

¢ class Parma_Polyhedra_Library::NNC_Polyhedron

A not necessarily closed convex polyhedron.

¢ class Parma_Polyhedra_Library::Smash_Reduction< D1, D2 >

This class provides the reduction method for the Smash_Product domain.
¢ class Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >

This class provides the reduction method for the Constraints_Product domain.
¢ class Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 >

This class provides the reduction method for the Congruences_Product domain.
¢ class Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 >

This class provides the reduction method for the Shape_Preserving_Product domain.

¢ class Parma_Polyhedra_Library::No_Reduction< D1, D2 >

This class provides the reduction method for the Direct_Product domain.

* class Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >

The partially reduced product of two abstractions.
e class Parma_Polyhedra_Library::Determinate< PSET >
A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].
* class Parma_Polyhedra_Library::Powerset< D >
The powerset construction on a base-level domain.
e class Parma_Polyhedra_Library::Pointset_Powerset< PSET >

The powerset construction instantiated on PPL pointset domains.
e class Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format
>
A generic Cast Floating Point Expression.
¢ class Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format
>
A generic Constant Floating Point Expression.
e class Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, FP_Format
>
A generic Variable Floating Point Expression.
e class Parma_Polyhedra_Library::Sum_Floating_Point_Expression< FP_Interval_Type, FP_Format
>
A generic Sum Floating Point Expression.
¢ class Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type, FP_-
Format >
A generic Difference Floating Point Expression.
e class Parma_Polyhedra_Library::Multiplication_Floating_Point_Expression< FP_Interval_Type, F-
P_Format >
A generic Multiplication Floating Point Expression.
e class Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval_Type, FP_Format
>

A generic Division Floating Point Expression.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

68 CONTENTS

e class Parma_Polyhedra_Library::Opposite_Floating_Point_Expression< FP_Interval_Type, FP_Format
>

A generic Opposite Floating Point Expression.
* class Parma_Polyhedra_Library::GMP_Integer

Unbounded integers as provided by the GMP library.

Macros

* #define PPL_VERSION_MAJOR 1

The major number of the PPL version.

#define PPL_VERSION_MINOR 0

The minor number of the PPL version.

#define PPL_VERSION_REVISION 0

The revision number of the PPL version.

#define PPL_VERSION_BETA 0

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

#define PPL_VERSION "1.0"

A string containing the PPL version.

Typedefs

* typedef size_t Parma_Polyhedra_Library::dimension_type

An unsigned integral type for representing space dimensions.
* typedef size_t Parma_Polyhedra_Library::memory_size_type

An unsigned integral type for representing memory size in bytes.

¢ typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient
An alias for easily naming the type of PPL coefficients.

Enumerations

e enum Parma_Polyhedra_Library::Result {
Parma_Polyhedra_Library::V_EMPTY, Parma_Polyhedra_Library::V_EQ, Parma_Polyhedra_Library-
::V_LT, Parma_Polyhedra_Library::V_GT,
Parma_Polyhedra_Library::V_NE, Parma_Polyhedra_Library::V_LE, Parma_Polyhedra_Library::-
V_GE, Parma_Polyhedra_Library::V_LGE,
Parma_Polyhedra_Library::V_OVERFLOW, Parma_Polyhedra_Library::V_LT_INF, Parma_Polyhedra-
_Library::V_GT_SUP, Parma_Polyhedra_Library::V_LT_PLUS_INFINITY,
Parma_Polyhedra_Library::V_GT_MINUS_INFINITY, Parma_Polyhedra_Library::V_EQ_MINU-
S_INFINITY, Parma_Polyhedra_Library::V_EQ_PLUS_INFINITY, Parma_Polyhedra_Library::V-

NAN,

Parma_Polyhedra_Library::V_CVT_STR_UNK, Parma_Polyhedra_Library::V_DIV_ZERO, Parma-
_Polyhedra_Library::V_INF_ADD_INF, Parma_Polyhedra_Library::V_INF_DIV_INF,
Parma_Polyhedra_Library::V_INF_MOD, Parma_Polyhedra_Library::V_INF_MUL_ZERO, Parma-
_Polyhedra_Library::V_INF_SUB_INF, Parma_Polyhedra_Library::V_MOD_ZERO,
Parma_Polyhedra_Library::V_SQRT_NEG, Parma_Polyhedra_Library::V_UNKNOWN_NEG_OV-
ERFLOW, Parma_Polyhedra_Library::V_UNKNOWN_POS_OVERFLOW, Parma_Polyhedra_Library-
::V_UNREPRESENTABLE }

Possible outcomes of a checked arithmetic computation.

740

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 69

e enum Parma_Polyhedra_Library::Rounding_Dir {
Parma_Polyhedra_Library::ROUND_DOWN, Parma_Polyhedra_Library::ROUND_UP, Parma_Polyhedra-
_Library::ROUND_IGNORE , Parma_Polyhedra_Library::ROUND_NOT_NEEDED ,
Parma_Polyhedra_Library::ROUND_STRICT_RELATION }

Rounding directions for arithmetic computations.
e enum Parma_Polyhedra_Library::Degenerate_Element { Parma_Polyhedra_Library::UNIVERSE, Parma-
_Polyhedra_Library::EMPTY }

Kinds of degenerate abstract elements.
e enum Parma_Polyhedra_Library::Relation_Symbol {
Parma_Polyhedra_Library::EQUAL, Parma_Polyhedra_Library::LESS_THAN, Parma_Polyhedra-
_Library::LESS_OR_EQUAL, Parma_Polyhedra_Library:: GREATER_THAN,
Parma_Polyhedra_Library:: GREATER_OR_EQUAL, Parma_Polyhedra_Library::NOT_EQUAL }

Relation symbols.
e enum Parma_Polyhedra_Library::Complexity_Class { Parma_Polyhedra_Library::POLYNOMIAL-
_COMPLEXITY, Parma_Polyhedra_Library::SIMPLEX_COMPLEXITY, Parma_Polyhedra_Library-
:ANY_COMPLEXITY }

Complexity pseudo-classes.
e enum Parma_Polyhedra_Library::Optimization_Mode { Parma_Polyhedra_Library:: MINIMIZATI-
ON, Parma_Polyhedra_Library:: MAXIMIZATION }

Possible optimization modes.

e enum Parma_Polyhedra_Library::Bounded_Integer_Type_Width {
Parma_Polyhedra_Library::BITS_8, Parma_Polyhedra_Library::BITS_16, Parma_Polyhedra_Library-
=:BITS_32, Parma_Polyhedra_Library::BITS_64,

Parma_Polyhedra_Library::BITS_128 }

Widths of bounded integer types.
* enum Parma_Polyhedra_Library::Bounded_Integer_Type_Representation { Parma_Polyhedra_Library-
::UNSIGNED, Parma_Polyhedra_Library::SIGNED_2_COMPLEMENT }

Representation of bounded integer types.
e enum Parma_Polyhedra_Library::Bounded_Integer_Type_Overflow { Parma_Polyhedra_Library::-
OVERFLOW_WRAPS, Parma_Polyhedra_Library::OVERFLOW_UNDEFINED, Parma_Polyhedra-
_Library:: OVERFLOW_IMPOSSIBLE }

Overflow behavior of bounded integer types.
e enum Parma_Polyhedra_Library::Representation { Parma_Polyhedra_Library::DENSE, Parma_Polyhedra-
_Library::SPARSE }
Possible representations of coefficient sequences (i.e. linear expressions and more complex objects contain-
ing linear expressions, e.g. Constraints, Generators, efc.).
e enum Parma_Polyhedra_Library::Floating_Point_Format {
Parma_Polyhedra_Library::IEEE754_HALF, Parma_Polyhedra_Library::IEEE754_SINGLE, Parma-
_Polyhedra_Library::IEEE754_DOUBLE, Parma_Polyhedra_Library::IEEE754_QUAD,
Parma_Polyhedra_Library::INTEL_DOUBLE_EXTENDED, Parma_Polyhedra_Library::IBM_SIN-
GLE, Parma_Polyhedra_Library::IBM_DOUBLE }

Floating point formats known to the library.
e enum Parma_Polyhedra_Library::PIP_Problem_Status { Parma_Polyhedra_Library::UNFEASIBL-
E_PIP_PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_PIP_PROBLEM }

Possible outcomes of the PIP_Problem solver.
e enum Parma_Polyhedra_Library::MIP_Problem_Status { Parma_Polyhedra_Library::UNFEASIB-
LE_MIP_PROBLEM, Parma_Polyhedra_Library:: UNBOUNDED_MIP_PROBLEM, Parma_Polyhedra-
_Library::OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

70

CONTENTS

Variables

* const Throwable xvolatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

Functions Inspecting and/or Combining Result Values

Result Parma_Polyhedra_Library::operator& (Result x, Result y)
Result Parma_Polyhedra_Library::operator| (Result x, Result y)
Result Parma_Polyhedra_Library::operator- (Result x, Result y)
Result_Class Parma_Polyhedra_Library::result_class (Result r)

Extracts the value class part of r (representable number, unrepresentable minus/plus infinity or nan).
Result_Relation Parma_Polyhedra_Library::result_relation (Result r)
Extracts the relation part of r.

Result Parma_Polyhedra_Library::result_relation_class (Result r)

Functions Inspecting and/or Combining Rounding_Dir Values

Rounding_Dir Parma_Polyhedra_Library::operator& (Rounding_Dir x, Rounding_Dir y)
Rounding_Dir Parma_Polyhedra_Library::operator| (Rounding_Dir x, Rounding_Dir y)
Rounding_Dir Parma_Polyhedra_Library::inverse (Rounding_Dir dir)

Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.
Rounding_Dir Parma_Polyhedra_Library::round_dir (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_down (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_up (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_ignore (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_not_needed (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_not_requested (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_direct (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_inverse (Rounding_Dir dir)
bool Parma_Polyhedra_Library::round_strict_relation (Rounding_Dir dir)
fpu_rounding_direction_type Parma_Polyhedra_Library::round_fpu_dir (Rounding_Dir dir)

Functions for the Synthesis of Linear Rankings

¢ template<typename PSET >

bool Parma_Polyhedra_Library::termination_test_MS (const PSET &pset)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

* template<typename PSET >

bool Parma_Polyhedra_Library::termination_test_ MS_2 (const PSET &pset_before, const PSET
&pset_after)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

¢ template<typename PSET >

bool Parma_Polyhedra_Library::one_affine_ranking_function_MS (const PSET &pset, Generator
&mu)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 71

template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_MS_2 (const PSET &pset_before, const
PSET &pset_after, Generator &mu)
Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_MS (const PSET &pset, C_Polyhedron
&mu_space)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].
template <typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking functions_MS_2 (const PSET &pset_before, const
PSET &pset_after, C_Polyhedron &mu_space)
Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZI10].
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS (const PSET &pset, C_-
Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS_2 (const PSET &pset_before,
const PSET &pset_after, C_Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_-
space)

Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR (const PSET &pset)
Like termination_test_MS() but using the method by Podelski and Rybalchenko [BMPZI10)].
template <typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR_2 (const PSET &pset_before, const PSET &pset-
_after)

Like termination_test_MS_2() but using an alternative formalization of the method by Podelski and Ry-
balchenko [BMPZ10].
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR (const PSET &pset, Generator &mu)
Like one_affine_ranking_function_MS() but using the method by Podelski and Rybalchenko [BMPZI10].
template <typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR_2 (const PSET &pset_before, const
PSET &pset_after, Generator &mu)

Like one_affine_ranking_function_MS_2() but using an alternative formalization of the method by Podelski
and Rybalchenko [BMPZI10)].
template <typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_PR (const PSET &pset, NNC_Polyhedron
&mu_space)
Like all_affine_ranking_functions_MS() but using the method by Podelski and Rybalchenko [BMPZI10].
template <typename PSET >

void Parma_Polyhedra_Library::all_affine_ranking_functions_PR_2 (const PSET &pset_before, const
PSET &pset_after, NNC_Polyhedron &mu_space)

Like all_affine_ranking_functions_MS_2() but using an alternative formalization of the method by Podelski
and Rybalchenko [BMPZI10].

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

72 CONTENTS

8.1.1 Detailed Description

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

8.1.2 Macro Definition Documentation

8.1.2.1 #define PPL_.VERSION_MAJOR 1
The major number of the PPL version.
8.1.2.2 #define PPL_.VERSION_MINOR 0
The minor number of the PPL version.
8.1.2.3 #define PPL_VERSION_REVISION 0
The revision number of the PPL version.
8.1.2.4 #define PPL_VERSION "1.0”

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_ VERSION_MAJOR and PPL_VERSION_MINOR,

respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA isnot zerooM "." m "." r if PPL_VERSION_REVISION is not zero and P-
PL_VERSION_BETA iszero,M "." m "." r "pre" b if neither PPL_VERSION_REVISION nor

PPL_VERSION_BETA are zero.

8.1.3 Typedef Documentation

8.1.3.1 typedef size_t Parma_Polyhedra_Library::dimension_type

An unsigned integral type for representing space dimensions.

8.1.3.2 typedef size_t Parma_Polyhedra_Library::memory_size_type

An unsigned integral type for representing memory size in bytes.

8.1.3.3 typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expres-
sions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration
options (see file README . configure), a Coefficient may actually be:

* The GMP_Integer type, which in turn is an alias for the mpz_class type implemented by the C++
interface of the GMP library (this is the default configuration).

* An instance of the Checked_Number class template: with the policy Bounded_Integer_Coefficient-
_Policy, this implements overflow detection on top of a native integral type (available template in-
stances include checked integers having 8, 16, 32 or 64 bits); with the Checked_Number_Transparent-
_Policy, this is a wrapper for native integral types with no overflow detection (available template
instances are as above).

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 73

8.1.4 Enumeration Type Documentation

8.1.4.1 enum Parma_Polyhedra_Library::Result

Possible outcomes of a checked arithmetic computation.

Enumerator:

V_EMPTY The exact result is not comparable.

V_EQ The computed result is exact.

V_LT The computed result is inexact and rounded up.

V_GT The computed result is inexact and rounded down.

V_NE The computed result is inexact.

V_LE The computed result may be inexact and rounded up.

V_GE The computed result may be inexact and rounded down.

V_LGE The computed result may be inexact.

V_OVERFLOW The exact result is a number out of finite bounds.

V_LT _INF A negative integer overflow occurred (rounding up).

V_GT_SUP A positive integer overflow occurred (rounding down).

V_LT PLUS_INFINITY A positive integer overflow occurred (rounding up).
V_GT_MINUS_INFINITY A negative integer overflow occurred (rounding down).
V_EQ_MINUS_INFINITY Negative infinity result.

V_EQ_PLUS_INFINITY Positive infinity result.

V_NAN Not a number result.

V_CVT_STR_UNK Converting from unknown string.

V_DIV_ZERO Dividing by zero.

V_INF_ADD_INF Adding two infinities having opposite signs.

V_INF_DIV_INF Dividing two infinities.

V_INF_MOD Taking the modulus of an infinity.

V_INF_MUL_ZERO Multiplying an infinity by zero.

V_INF_SUB_INF Subtracting two infinities having the same sign.
V_MOD_ZERO Computing a remainder modulo zero.

V_SORT_NEG Taking the square root of a negative number.
V_UNKNOWN_NEG_OVERFLOW Unknown result due to intermediate negative overflow.
V_UNKNOWN_POS_OVERFLOW Unknown result due to intermediate positive overflow.
V_UNREPRESENTABLE The computed result is not representable.

8.1.4.2 enum Parma_Polyhedra_Library::Rounding_Dir

Rounding directions for arithmetic computations.

Enumerator:

ROUND_DOWN Round toward —oo.
ROUND_UP Round toward +o00.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

74 CONTENTS

ROUND_IGNORE Rounding is delegated to lower level. Result info is evaluated lazily.

ROUND_NOT_NEEDED Rounding is not needed: client code must ensure that the operation result
is exact and representable in the destination type. Result info is evaluated lazily.

ROUND_STRICT_RELATION The client code is willing to pay an extra price to know the exact
relation between the exact result and the computed one.

8.1.4.3 enum Parma_Polyhedra_Library::Degenerate_Element

Kinds of degenerate abstract elements.

Enumerator:
UNIVERSE The universe element, i.e., the whole vector space.

EMPTY The empty element, i.e., the empty set.

8.1.4.4 enum Parma_Polyhedra_Library::Relation_Symbol

Relation symbols.

Enumerator:
EQUAL Equal to.
LESS THAN Less than.
LESS _OR_EQUAL Less than or equal to.
GREATER_THAN Greater than.
GREATER_OR_EQUAL Greater than or equal to.
NOT_EQUAL Not equal to.

8.1.4.5 enum Parma_Polyhedra_Library::Complexity_Class
Complexity pseudo-classes.
Enumerator:

POLYNOMIAL_COMPLEXITY Worst-case polynomial complexity.

SIMPLEX COMPLEXITY Worst-case exponential complexity but typically polynomial behavior.
ANY_COMPLEXITY Any complexity.

8.1.4.6 enum Parma_Polyhedra_Library::Optimization_Mode
Possible optimization modes.
Enumerator:

MINIMIZATION Minimization is requested.
MAXIMIZATION Maximization is requested.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 75

8.1.4.7 enum Parma_Polyhedra_Library::Bounded_Integer_Type_Width

Widths of bounded integer types.

See the section on approximating bounded integers.

Enumerator:
BITS_8 8 bits.
BITS_16 16 bits.
BITS_32 32 bits.
BITS_64 64 bits.
BITS_128 128 bits.

8.1.4.8 enum Parma_Polyhedra_Library::Bounded_Integer Type_Representation

Representation of bounded integer types.

See the section on approximating bounded integers.

Enumerator:
UNSIGNED Unsigned binary.

SIGNED_2_COMPLEMENT Signed binary where negative values are represented by the two’s
complement of the absolute value.

8.1.4.9 enum Parma_Polyhedra_Library::Bounded_Integer_Type_Overflow

Overflow behavior of bounded integer types.

See the section on approximating bounded integers.

Enumerator:

OVERFLOW_WRAPS On overflow, wrapping takes place. This means that, for a w-bit bounded
integer, the computation happens modulo 2*.

OVERFLOW_UNDEFINED On overflow, the result is undefined. This simply means that the result
of the operation resulting in an overflow can take any value.

Note

Even though something more serious can happen in the system being analyzed —due to,
e.g., C’s undefined behavior—, here we are only concerned with the results of arithmetic
operations. It is the responsibility of the analyzer to ensure that other manifestations of
undefined behavior are conservatively approximated.

OVERFLOW_IMPOSSIBLE Overflow is impossible. This is for the analysis of languages where
overflow is trapped before it affects the state, for which, thus, any indication that an overflow
may have affected the state is necessarily due to the imprecision of the analysis.

8.1.4.10 enum Parma_Polyhedra_Library::Representation

Possible representations of coefficient sequences (i.e. linear expressions and more complex objects con-
taining linear expressions, e.g. Constraints, Generators, etc.).

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

76 CONTENTS

Enumerator:

DENSE Dense representation: the coefficient sequence is represented as a vector of coefficients,
including the zero coefficients. If there are only a few nonzero coefficients, this representation is
faster and also uses a bit less memory.

SPARSE Sparse representation: only the nonzero coefficient are stored. If there are many nonzero
coefficients, this improves memory consumption and run time (both because there is less data to
process in O(n) operations and because finding zeroes/nonzeroes is much faster since zeroes are
not stored at all, so any stored coefficient is nonzero).

8.1.4.11 enum Parma_Polyhedra_Library::Floating_Point_Format

Floating point formats known to the library.

The parameters of each format are defined by a specific struct in file Float.defs.hh. See the section on
Analysis of floating point computations for more information.

Enumerator:

IEEE754_HALF IEEE 754 half precision, 16 bits (5 exponent, 10 mantissa).

IEEE754_SINGLE 1EEE 754 single precision, 32 bits (8 exponent, 23 mantissa).
IEEE754_DOUBLE 1EEE 754 double precision, 64 bits (11 exponent, 52 mantissa).
IEEE754_QUAD 1EEE 754 quad precision, 128 bits (15 exponent, 112 mantissa).
INTEL_DOUBLE_EXTENDED Intel double extended precision, 80 bits (15 exponent, 64 mantissa)

IBM_SINGLE 1BM single precision, 32 bits (7 exponent, 24 mantissa).
IBM_DOUBLE IBM double precision, 64 bits (7 exponent, 56 mantissa).

8.1.4.12 enum Parma_Polyhedra_Library::PIP_Problem_Status

Possible outcomes of the PIP_Problem solver.

Enumerator:

UNFEASIBLE_PIP_PROBLEM The problem is unfeasible.
OPTIMIZED_PIP_PROBLEM The problem has an optimal solution.

8.1.4.13 enum Parma_Polyhedra_Library::MIP_Problem_Status

Possible outcomes of the MIP_Problem solver.

Enumerator:

UNFEASIBLE _MIP_PROBLEM The problem is unfeasible.
UNBOUNDED_MIP_PROBLEM The problem is unbounded.
OPTIMIZED_MIP_PROBLEM The problem has an optimal solution.

8.1.5 Function Documentation

8.1.5.1 Result Parma_Polyhedra_Library::operator& (Result x, Resulty) [inline]

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

8.1 C++ Language Interface 77

8.1.5.2 Result Parma_Polyhedra_Library::operator| (Result x, Resulty) [inline]

8.1.5.3 Result Parma_Polyhedra_Library::operator- (Result x, Resulty) [inline]

8.1.5.4 Result_Class Parma_Polyhedra_Library::result_class (Resultr) [inline]

Extracts the value class part of r (representable number, unrepresentable minus/plus infinity or nan).
8.1.5.5 Result_Relation Parma_Polyhedra_Library::result_relation (Resultr) [inline]

Extracts the relation part of r.

8.1.5.6 Result Parma_Polyhedra_Library::result_relation_class (Resultr) [inline]

8.1.5.7 Rounding_Dir Parma_Polyhedra_Library::operator& (Rounding_Dir x, Rounding_Dir y)

[inline]

8.1.5.8 Rounding_Dir Parma_Polyhedra_Library::operator| (Rounding_Dir x, Rounding_Dir y)

[inline]
8.1.5.9 Rounding_Dir Parma_Polyhedra_Library::inverse (Rounding Dirdir) [inline]
Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.
8.1.5.10 Rounding_Dir Parma_Polyhedra_Library::round_dir (Rounding_Dir dir) [inline]
8.1.5.11 bool Parma_Polyhedra_Library::round_down (Rounding Dir dir) [inline]
8.1.5.12 bool Parma_Polyhedra_Library::round_up (Rounding Dir dir) [inline]
8.1.5.13 bool Parma_Polyhedra_Library::round_ignore (Rounding_Dirdir) [inline]
8.1.5.14 bool Parma_Polyhedra_Library::round_not_needed (Rounding_Dirdir) [inline]
8.1.5.15 bool Parma_Polyhedra_Library::round_not_requested (Rounding Dir dir) [inline]
8.1.5.16 bool Parma_Polyhedra_Library::round_direct (Rounding Dir dir) [inline]
8.1.5.17 bool Parma_Polyhedra_Library::round_inverse (Rounding Dir dir) [inline]
8.1.5.18 bool Parma_Polyhedra_Library::round_strict_relation (Rounding_Dir dir) [inline]

8.1.5.19 fpu_rounding_direction_type Parma_Polyhedra_Library::round_fpu_dir (Rounding_Dir dir)

[inline]

8.1.5.20 template<typename PSET > bool Parma_Polyhedra_Library::termination_test_MS (const PSET &
pset)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized -
constraints () method.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

78 CONTENTS

Parameters

pset | A pointset approximating the behavior of a loop whose termination is being analyzed.
The variables indices are allocated as follows:

e z4,...,x] goonto space dimensions 0,...,n — 1,

* zy1,...,T, g0 onto space dimensions n, ..., 2n — 1,

where unprimed variables represent the values of the loop-relevant program variables
before the update performed in the loop body, and primed variables represent the values
of those program variables after the update.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program
variables, then t rue is returned if and only if the loop terminates.

8.1.5.21 template<typename PSET > bool Parma_Polyhedra_Library::termination_test MS_2 (const PSET
& pset_before, const PSET & pset after)

Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized -
constraints () method.

Parameters

pset_before | A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as
follows:

* z1,...,T, go onto space dimensions O, ...,n — 1.

pset_after | A pointset approximating the values of loop-relevant variables after the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as

follows:
e z4,...,x] goonto space dimensions 0,...,n — 1,
* x1,...,T, g0 onto space dimensions n, ...,2n — 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset_before and pset_after precisely characterize the effect of the loop body
onto the loop-relevant program variables, then t rue is returned if and only if the loop terminates.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 79

8.1.5.22 template<typename PSET > bool Parma_Polyhedra_Library::one _affine_ranking_function_MS (
const PSET & pset, Generator & mu)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized_-
constraints () method.

Parameters

pset | A pointset approximating the behavior of a loop whose termination is being analyzed.
The variables indices are allocated as follows:

e z4,...,x] goonto space dimensions 0,...,n — 1,
* z1,...,T, g0 onto space dimensions n, ..., 2n — 1,

where unprimed variables represent the values of the loop-relevant program variables
before the update performed in the loop body, and primed variables represent the values
of those program variables after the update.

mu | When t rue is returned, this is assigned a point of space dimension n + 1 encoding one
(not further specified) affine ranking function for the loop being analyzed. The ranking
function is of the form f19 + Y, pix; where 19, i1, . . . , i, are the coefficients of mu
corresponding to the space dimensions 7,0, ..., n — 1, respectively.

Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program
variables, then t rue is returned if and only if the loop terminates.

8.1.5.23 template<typename PSET > bool Parma_Polyhedra_Library::one_affine_ranking_function_MS_2 (
const PSET & pset_before, const PSET & pset after, Generator & mu)

Termination test with witness ranking function using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized_-
constraints () method.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

80 CONTENTS

Parameters

pset_before | A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as
follows:

* 21,...,T, go onto space dimensions 0, ...,n — 1.

pset_after | A pointset approximating the values of loop-relevant variables after the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as

follows:
e z4,...,x] goonto space dimensions 0,...,n — 1,
* z1,...,T, g0 onto space dimensions n, ..., 2n — 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Parameters
mu | When t rue is returned, this is assigned a point of space dimension n+ 1 encoding one
(not further specified) affine ranking function for the loop being analyzed. The ranking
function is of the form p + Zz;l Wi x; where Lo, j41, - . . , by, are the coefficients of mu
corresponding to the space dimensions 1,0, ...,n — 1, respectively.
Returns

true if any loop approximated by pset definitely terminates; false if the test is inconclusive.
However, if pset_before and pset_after precisely characterize the effect of the loop body
onto the loop-relevant program variables, then t rue is returned if and only if the loop terminates.

8.1.5.24 template<typename PSET > void Parma_Polyhedra_Library::all_affine_ranking_functions_MS (
const PSET & pset, C_Polyhedron & mu_space)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZ10].

Template Parameters

PSET Any pointset supported by the PPL that provides the minimized -
constraints () method.

Parameters

pset | A pointset approximating the behavior of a loop whose termination is being analyzed.
The variables indices are allocated as follows:

e z,...,x] go onto space dimensions 0,...,n — 1,
* xy,...,T, g0 onto space dimensions n, . ..,2n — 1,

where unprimed variables represent the values of the loop-relevant program variables
before the update performed in the loop body, and primed variables represent the values
of those program variables after the update.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 81

mu_space

This is assigned a closed polyhedron of space dimension n+1 representing the space of
all the affine ranking functions for the loops that are precisely characterized by pset.

These ranking functions are of the form o + Z?:l w;x; where pg, f1, - - ., fby, identify
any point of the mu_space polyhedron. The variables pq, jt1,. . ., ft, correspond to
the space dimensions of mu_space n,0,...,n—1, respectively. When mu_space is

empty, it means that the test is inconclusive. However, if pset precisely characterizes
the effect of the loop body onto the loop-relevant program variables, then mu_space
is empty if and only if the loop does not terminate.

8.1.5.25 template<typename PSET > void Parma_Polyhedra_Library::all_affine_ranking_functions_MS_2 (
const PSET & pset before, const PSET & pset_after, C_Polyhedron & mu_space)

Termination test with ranking function space using an improvement of the method by Mesnard and Sere-

brenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized_-

constraints () method.

Parameters

pset_before

A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as
follows:

* 1,...,T, go onto space dimensions 0, ...,n — 1.

pset_after

A pointset approximating the values of loop-relevant variables after the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as
follows:

e z4,...,x] goonto space dimensions 0,...,n — 1,

* z1,...,T, g0 onto space dimensions n, ..., 2n — 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Parameters

mu_space

This is assigned a closed polyhedron of space dimension n+1 representing the space of
all the affine ranking functions for the loops that are precisely characterized by pset.

These ranking functions are of the form o + Z?:l Wix; where pig, f1, - - . , by identify
any point of the mu_space polyhedron. The variables pq, 1, ..., tt, correspond
to the space dimensions of mu_space n,0,...,n — 1, respectively. When mu_ -

space is empty, it means that the test is inconclusive. However, if pset_before
and pset_after precisely characterize the effect of the loop body onto the loop-
relevant program variables, then mu_space is empty if and only if the loop does not
terminate.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

82 CONTENTS

8.1.5.26 template<typename PSET > void Parma_Polyhedra_Library::all_affine_quasi_ranking_-
functions_MS (const PSET & pset, C_Polyhedron & decreasing_mu_space, C_Polyhedron &
bounded_mu_space)

Computes the spaces of affine guasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized_-
constraints () method.

Parameters

pset | A pointset approximating the behavior of a loop whose termination is being analyzed.
The variables indices are allocated as follows:

e z4,...,x] goonto space dimensions 0,...,n — 1,
* z1,...,T, g0 onto space dimensions n, ..., 2n — 1,

where unprimed variables represent the values of the loop-relevant program variables

before the update performed in the loop body, and primed variables represent the values

of those program variables after the update.

decreasing_- | This is assigned a closed polyhedron of space dimension n + 1 representing the space
mu_space | of all the decreasing affine functions for the loops that are precisely characterized by

pset.

bounded_mu_- | This is assigned a closed polyhedron of space dimension n + 1 representing the space

space | of all the lower bounded affine functions for the loops that are precisely characterized
by pset.

These quasi-ranking functions are of the form o + >, pix; where jug, g1, . . - , ftn, identify any point
of the decreasing_mu_space and bounded_mu_space polyhedrons. The variables pq, i1, - - -, fin
correspond to the space dimensions n, 0, ... ,n—1, respectively. When decreasing mu_space (resp.,
bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset precisely
characterizes the effect of the loop body onto the loop-relevant program variables, then decreasing_-
mu_space (resp., bounded_mu_space) will be empty if and only if there is no decreasing (resp., lower
bounded) affine function, so that the loop does not terminate.

8.1.5.27 template<typename PSET > void Parma_Polyhedra_Library::all_affine_quasi_ranking_-
functions_MS_2 (const PSET & pset_before, const PSET & pset after, C_Polyhedron &
decreasing_mu_space, C_Polyhedron & bounded_mu_space)

Computes the spaces of affine guasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10].

Template Parameters

PSET | Any pointset supported by the PPL that provides the minimized_-
constraints () method.

740

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

8.1 C++ Language Interface 83

Parameters

pset_before | A pointset approximating the values of loop-relevant variables before the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as
follows:

* 21,...,T, go onto space dimensions 0, ...,n — 1.

pset_after | A pointset approximating the values of loop-relevant variables after the update per-
formed in the loop body that is being analyzed. The variables indices are allocated as

follows:
e z4,...,x] goonto space dimensions 0,...,n — 1,
* z1,...,T, g0 onto space dimensions n, ..., 2n — 1,

Note that unprimed variables represent the values of the loop-relevant program variables before the update
performed in the loop body, and primed variables represent the values of those program variables after the
update. Note also that unprimed variables are assigned to different space dimensions in pset_before
and pset_after.

Parameters

decreasing_- | This is assigned a closed polyhedron of space dimension n + 1 representing the space
mu_space | of all the decreasing affine functions for the loops that are precisely characterized by
pset.

bounded_mu_- | This is assigned a closed polyhedron of space dimension n + 1 representing the space
space | of all the lower bounded affine functions for the loops that are precisely characterized
by pset.

These ranking functions are of the form o + >, pwiz; where g, i1, - . . , fb, identify any point of the
decreasing_mu_space and bounded_mu_space polyhedrons. The variables pg, tt1,. - ., ftn, cor-
respond to the space dimensions n,0,...,n — 1, respectively. When decreasing_mu_space (resp.,
bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset_before and
pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables,
then decreasing_mu_space (resp., bounded_mu_space) will be empty if and only if there is no
decreasing (resp., lower bounded) affine function, so that the loop does not terminate.

8.1.6 Variable Documentation

8.1.6.1 const Throwable: volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

This pointer, which is initialized to zero, is repeatedly checked along any super-linear (i.e., computationally
expensive) computation path in the library. When it is found nonzero the exception it points to is thrown. In
other words, making this pointer point to an exception (and leaving it in this state) ensures that the library
will return control to the client application, possibly by throwing the given exception, within a time that is
a linear function of the size of the representation of the biggest object (powerset of polyhedra, polyhedron,
system of constraints or generators) on which the library is operating upon.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

84 CONTENTS

Note

The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

9 Namespace Documentation

9.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Namespaces

* namespace IO_Operators

All input/output operators are confined to this namespace.

Classes

¢ class FP_Oracle

An abstract class to be implemented by an external analyzer such as ECLAIR in order to provide to the PPL
the necessary information for performing the analysis of floating point computations.

e class Variable

A dimension of the vector space.
e class Throwable

User objects the PPL can throw.
* struct Recycle_Input

A tag class.
¢ class Linear_Form

A linear form with interval coefficients.
¢ class Checked_Number

A wrapper for numeric types implementing a given policy.
e class Interval

A generic, not necessarily closed, possibly restricted interval.
¢ class Variables_Set

An std::set of variables’ indexes.
* class Linear_Expression

A linear expression.
¢ class Constraint

A linear equality or inequality.
* class Generator

A line, ray, point or closure point.
¢ class Grid_Generator

A grid line, parameter or grid point.
* class Congruence

A linear congruence.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

9.1 Parma_Polyhedra_Library Namespace Reference 85

¢ class Box

A not necessarily closed, iso-oriented hyperrectangle.
¢ class Constraint_System
A system of constraints.
* class Constraint_System_const_iterator
An iterator over a system of constraints.
¢ class Congruence_System
A system of congruences.
e class Poly_Con_Relation
The relation between a polyhedron and a constraint.
¢ class Generator_System
A system of generators.
¢ class Generator_System_const_iterator
An iterator over a system of generators.
* class Poly_Gen_Relation
The relation between a polyhedron and a generator.
* class Polyhedron
The base class for convex polyhedra.
¢ class MIP_Problem
A Mixed Integer (linear) Programming problem.
e class Floating_Point_Expression
A floating point expression on a given format.
¢ class Grid_Generator_System

A system of grid generators.
e class Grid

A grid.
* class BD_Shape

A bounded difference shape.
¢ class C_Polyhedron

A closed convex polyhedron.
* class Octagonal_Shape

An octagonal shape.
* class Concrete_Expression_Type

The type of a concrete expression.
¢ class Concrete_Expression_Common

Base class for all concrete expressions.
¢ class Binary_Operator_Common

Base class for binary operator applied to two concrete expressions.
¢ class Unary_Operator_Common

Base class for unary operator applied to one concrete expression.
¢ class Cast_Operator_Common

Base class for cast operator concrete expressions.
¢ class Integer_Constant_Common

Base class for integer constant concrete expressions.
¢ class Floating_Point_Constant_Common

Base class for floating-point constant concrete expression.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

86

CONTENTS

class Approximable_Reference_Common

Base class for references to some approximable.
class PIP_Problem

A Parametric Integer (linear) Programming problem.
class PIP_Tree_Node

A node of the PIP solution tree.
class PIP_Solution_Node

A tree node representing part of the space of solutions.
class PIP_Decision_Node

A tree node representing a decision in the space of solutions.
class BHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.
class H79_Certificate

A convergence certificate for the H79 widening operator.
class Grid_Certificate

The convergence certificate for the Grid widening operator.
class NNC_Polyhedron

A not necessarily closed convex polyhedron.
class Smash_Reduction

This class provides the reduction method for the Smash_Product domain.
class Constraints_Reduction

This class provides the reduction method for the Constraints_Product domain.
class Congruences_Reduction

This class provides the reduction method for the Congruences_Product domain.
class Shape_Preserving_Reduction

This class provides the reduction method for the Shape_Preserving_Product domain.
class No_Reduction

This class provides the reduction method for the Direct_Product domain.
class Partially_Reduced_Product

The partially reduced product of two abstractions.
class Domain_Product

This class is temporary and will be removed when template typedefs will be supported in C++.

class Determinate

A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].
class Powerset

The powerset construction on a base-level domain.
class Pointset_ Powerset

The powerset construction instantiated on PPL pointset domains.
class Cast_Floating_Point_Expression

A generic Cast Floating Point Expression.
class Constant_Floating_Point_Expression

A generic Constant Floating Point Expression.
class Variable_Floating_Point_Expression

A generic Variable Floating Point Expression.
class Sum_Floating_Point_Expression

A generic Sum Floating Point Expression.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

9.1 Parma_Polyhedra_Library Namespace Reference

87

class Difference_Floating_Point_Expression

A generic Difference Floating Point Expression.

class Multiplication_Floating_Point_Expression

A generic Multiplication Floating Point Expression.

class Division_Floating_Point_Expression

A generic Division Floating Point Expression.

class Opposite_Floating_Point_Expression

A generic Opposite Floating Point Expression.
class Watchdog

A watchdog timer.
class Threshold Watcher

A class of watchdogs controlling the exceeding of a threshold.
class Concrete_Expression

The base class of all concrete expressions.

class Binary_Operator

A binary operator applied to two concrete expressions.

class Unary_Operator

A unary operator applied to one concrete expression.

class Cast_Operator

A cast operator converting one concrete expression to some type.

class Integer_Constant

An integer constant concrete expression.

class Floating_Point_Constant

A floating-point constant concrete expression.

class Approximable_Reference

A concrete expression representing a reference to some approximable.

class GMP_Integer
Unbounded integers as provided by the GMP library.

Typedefs

typedef size_t dimension_type

An unsigned integral type for representing space dimensions.
typedef size_t memory_size_type

An unsigned integral type for representing memory size in bytes.
typedef int Concrete_Expression_Kind

Encodes the kind of concrete expression.

typedef int Concrete_Expression_BOP

Encodes a binary operator of concrete expressions.

typedef int Concrete_Expression_UOP

Encodes a unary operator of concrete expressions.

typedef PPL_COEFFICIENT_TYPE Coefficient

An alias for easily naming the type of PPL coefficients.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

88

CONTENTS

Enumerations

enum Result_Class { VC_NORMAL, VC_MINUS_INFINITY, VC_PLUS_INFINITY, VC_NAN
}

enum Result_Relation {

VR_EMPTY, VR_EQ, VR_LT, VR_GT,

VR_NE, VR_LE, VR_GE, VR_LGE }

enum Result {

V_EMPTY, V_EQ, V_LT, V_GT,

V_NE, V_LE, V_GE, V_LGE,

V_OVERFLOW, V_LT_INF, V_GT_SUP, V_LT_PLUS_INFINITY,

V_GT_MINUS_INFINITY, V_EQ_MINUS_INFINITY, V_EQ_PLUS_INFINITY, V_NAN,
V_CVT_STR_UNK, V_DIV_ZERO, V_INF_ADD_INF, V_INF_DIV_INF,

V_INF_MOD, V_INF_MUL_ZERO, V_INF_SUB_INF, V_MOD_ZERO,

V_SQRT_NEG, V_UNKNOWN_NEG_OVERFLOW, V_UNKNOWN_POS_OVERFLOW, V_U-
NREPRESENTABLE }

Possible outcomes of a checked arithmetic computation.
enum Rounding_Dir {
ROUND_DOWN, ROUND_UP, ROUND_IGNORE , ROUND_NOT_NEEDED ,
ROUND_STRICT_RELATION }

Rounding directions for arithmetic computations.

enum Degenerate_Element { UNIVERSE, EMPTY }

Kinds of degenerate abstract elements.
enum Relation_Symbol {
EQUAL, LESS_THAN, LESS_OR_EQUAL, GREATER_THAN,
GREATER_OR_EQUAL, NOT_EQUAL }
Relation symbols.
enum Complexity_Class { POLYNOMIAL_COMPLEXITY, SIMPLEX_COMPLEXITY, ANY_-
COMPLEXITY }

Complexity pseudo-classes.

enum Optimization_Mode { MINIMIZATION, MAXIMIZATION }

Possible optimization modes.
enum Bounded_Integer_Type_Width {
BITS_8, BITS_16, BITS_32, BITS_64,
BITS_128 }
Widths of bounded integer types.
enum Bounded_Integer_Type_Representation { UNSIGNED, SIGNED_2_COMPLEMENT }

Representation of bounded integer types.
enum Bounded_Integer_Type_Overflow { OVERFLOW_WRAPS, OVERFLOW_UNDEFINED, O-
VERFLOW_IMPOSSIBLE }

Overflow behavior of bounded integer types.
enum Representation { DENSE, SPARSE }
Possible representations of coefficient sequences (i.e. linear expressions and more complex objects contain-
ing linear expressions, e.g. Constraints, Generators, etc.).
enum Floating_Point_Format {
IEEE754_HALF, IEEE754_SINGLE, IEEE754_DOUBLE, IEEE754_QUAD,
INTEL_DOUBLE_EXTENDED, IBM_SINGLE, IBM_DOUBLE }

Floating point formats known to the library.

enum PIP_Problem_Status { UNFEASIBLE_PIP_PROBLEM, OPTIMIZED_PIP_PROBLEM }

Possible outcomes of the PIP_Problem solver.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

9.1 Parma_Polyhedra_Library Namespace Reference 89

e enum MIP_Problem_Status { UNFEASIBLE_MIP_PROBLEM, UNBOUNDED_MIP_PROBLE-
M, OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

Functions

* dimension_type not_a_dimension ()
Returns a value that does not designate a valid dimension.
* unsigned irrational_precision ()
Returns the precision parameter used for irrational calculations.
* void set_irrational_precision (const unsigned p)
Sets the precision parameter used for irrational calculations.
¢ void set_rounding_for_PPL ()
Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.
¢ void restore_pre_PPL_rounding ()
Sets the FPU rounding mode as it was before initialization of the PPL.
¢ void initialize ()
Initializes the library.
e void finalize ()
Finalizes the library.
¢ Coefficient_traits::const_reference Coefficient_zero ()
Returns a const reference to a Coefficient with value 0.
¢ Coefficient_traits::const_reference Coefficient_one ()
Returns a const reference to a Coefficient with value 1.
* dimension_type max_space_dimension ()

Returns the maximum space dimension this library can handle.

Library Version Control Functions

* unsigned version_major ()

Returns the major number of the PPL version.
* unsigned version_minor ()

Returns the minor number of the PPL version.
* unsigned version_revision ()

Returns the revision number of the PPL version.
* unsigned version_beta ()

Returns the beta number of the PPL version.
 const char * version ()

Returns a character string containing the PPL version.
¢ const char * banner ()

Returns a character string containing the PPL banner.

Functions Inspecting and/or Combining Result Values

* Result operator& (Result x, Result y)
* Result operator| (Result x, Result y)
* Result operator- (Result x, Result y)
¢ Result_Class result_class (Result r)

Extracts the value class part of r (representable number, unrepresentable minus/plus infinity or nan).

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

CONTENTS

¢ Result_Relation result_relation (Result r)

Extracts the relation part of r.
¢ Result result_relation_class (Result r)

Functions Controlling Floating Point Unit

* void fpu_initialize_control_functions ()
Initializes the FPU control functions.

 fpu_rounding_direction_type fpu_get_rounding_direction ()
Returns the current FPU rounding direction.

* void fpu_set_rounding_direction (fpu_rounding_direction_type dir)
Sets the FPU rounding direction to dir.

* fpu_rounding_control_word_type fpu_save_rounding_direction (fpu_rounding_direction_type dir)
Sets the FPU rounding direction to dir and returns the rounding control word previously in use.

* fpu_rounding_control_word_type fpu_save_rounding_direction_reset_inexact (fpu_rounding_direction-

_type dir)

Sets the FPU rounding direction to dir, clears the inexact computation status, and returns the rounding
control word previously in use.

* void fpu_restore_rounding_direction (fpu_rounding_control_word_type w)

Restores the FPU rounding rounding control word to cw.
* void fpu_reset_inexact ()

Clears the inexact computation status.
* int fpu_check_inexact ()

Queries the inexact computation status.

Functions Inspecting and/or Combining Rounding Dir Values

* Rounding_Dir operator& (Rounding_Dir x, Rounding_Dir y)
* Rounding_Dir operator| (Rounding_Dir x, Rounding_Dir y)
* Rounding_Dir inverse (Rounding_Dir dir)
Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.
* Rounding_Dir round_dir (Rounding_Dir dir)
* bool round_down (Rounding_Dir dir)
* bool round_up (Rounding_Dir dir)
* bool round_ignore (Rounding_Dir dir)
* bool round_not_needed (Rounding_Dir dir)
* bool round_not_requested (Rounding_Dir dir)
* bool round_direct (Rounding_Dir dir)
* bool round_inverse (Rounding_Dir dir)
* bool round_strict_relation (Rounding_Dir dir)
* fpu_rounding_direction_type round_fpu_dir (Rounding_Dir dir)

Functions for the Synthesis of Linear Rankings

¢ template<typename PSET >
bool termination_test_MS (const PSET &pset)
Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZI10].
¢ template<typename PSET >
bool termination_test_MS_2 (const PSET &pset_before, const PSET &pset_after)
Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].
* template<typename PSET >
bool one_affine_ranking_function_MS (const PSET &pset, Generator &mu)

Termination test with witness ranking function using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

9.1 Parma_Polyhedra_Library Namespace Reference 91

* template<typename PSET >
bool one_affine_ranking_function_MS_2 (const PSET &pset_before, const PSET &pset_after,
Generator &mu)
Termination test with witness ranking function using an improvement of the method by Mesnard and
Serebrenik [BMPZ10].
¢ template<typename PSET >
void all_affine_ranking_functions_MS (const PSET &pset, C_Polyhedron &mu_space)
Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZI10].
¢ template<typename PSET >
void all_affine_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_after,
C_Polyhedron &mu_space)
Termination test with ranking function space using an improvement of the method by Mesnard and Sere-
brenik [BMPZI10].
* template<typename PSET >
void all_affine_quasi_ranking_functions_MS (const PSET &pset, C_Polyhedron &decreasing_-
mu_space, C_Polyhedron &bounded_mu_space)
Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10)].
¢ template<typename PSET >
void all_affine_quasi_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_-
after, C_Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_space)
Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard
and Serebrenik [BMPZ10].
¢ template<typename PSET >
bool termination_test_PR (const PSET &pset)
Like termination_test_MS() but using the method by Podelski and Rybalchenko [BMPZ10].
¢ template<typename PSET >
bool termination_test_PR_2 (const PSET &pset_before, const PSET &pset_after)
Like termination_test_MS_2() but using an alternative formalization of the method by Podelski and Ry-
balchenko [BMPZ10].
¢ template<typename PSET >
bool one_affine_ranking_function_PR (const PSET &pset, Generator &mu)
Like one_affine_ranking_function_MS() but using the method by Podelski and Rybalchenko [BMPZI10].
* template<typename PSET >
bool one_affine_ranking_function_PR_2 (const PSET &pset_before, const PSET &pset_after,
Generator &mu)
Like one_affine_ranking_function_MS_2() but using an alternative formalization of the method by Podel-
ski and Rybalchenko [BMPZ10].
* template<typename PSET >
void all_affine_ranking_functions_PR (const PSET &pset, NNC_Polyhedron &mu_space)
Like all_affine_ranking_functions_MS() but using the method by Podelski and Rybalchenko [BMPZ10].
* template<typename PSET >
void all_affine_ranking_functions_PR_2 (const PSET &pset_before, const PSET &pset_after, N-
NC_Polyhedron &mu_space)

Like all_affine_ranking_functions_MS_2() but using an alternative formalization of the method by Podel-
ski and Rybalchenko [BMPZ10].

Variables

* const Throwable svolatile abandon_expensive_computations

A pointer to an exception object.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

92 CONTENTS

9.1.1 Detailed Description

The entire library is confined to this namespace.

9.1.2 Typedef Documentation

9.1.2.1 typedef int Parma_Polyhedra_Library::Concrete_Expression_Kind

Encodes the kind of concrete expression.

The values should be defined by the particular instance and uniquely identify one of: Binary_Operator,
Unary_Operator, Cast_Operator, Integer_Constant, Floating_Point_Constant, or Approximable_Reference.
For example, the Binary_Operator kind integer constant should be defined by an instance as the member
Binary_Operator<T>::KIND

9.1.2.2 typedef int Parma_Polyhedra_Library::Concrete_Expression_BOP

Encodes a binary operator of concrete expressions.

The values should be uniquely defined by the particular instance and named: ADD, SUB, MUL, DIV,
REM, BAND, BOR, BXOR, LSHIFT, RSHIFT.

9.1.2.3 typedef int Parma_Polyhedra_Library::Concrete_Expression_UOP

Encodes a unary operator of concrete expressions.

The values should be uniquely defined by the particular instance and named: PLUS, MINUS, BNOT.

9.1.3 Enumeration Type Documentation

9.1.3.1 enum Parma_Polyhedra_Library::Result_Class

Enumerator:
VC_NORMAL Representable number result class.
VC_MINUS_INFINITY Negative infinity result class.
VC_PLUS_INFINITY Positive infinity result class.
VC_NAN Not a number result class.

9.1.3.2 enum Parma_Polyhedra_Library::Result_Relation

Enumerator:
VR_EMPTY No values satisfies the relation.
VR_EQ Equal. This need to be accompanied by a value.
VR_LT Less than. This need to be accompanied by a value.
VR_GT Greater than. This need to be accompanied by a value.
VR_NE Not equal. This need to be accompanied by a value.
VR_LE Less or equal. This need to be accompanied by a value.
VR_GE Greater or equal. This need to be accompanied by a value.
VR_LGE All values satisfy the relation.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

9.2 Parma_Polyhedra_Library::10_Operators Namespace Reference 93

9.1.4 Function Documentation

9.1.41 const charx Parma_Polyhedra_Library::banner ()

Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

9.1.4.2 int Parma_Polyhedra_Library::fpu_check_inexact() [inline]

Queries the inexact computation status.

Returns O if the computation was definitely exact, 1 if it was definitely inexact, -1 if definite exactness
information is unavailable.

9.1.4.3 void Parma_Polyhedra_Library::set_irrational_precision (const unsignedp) [inline]

Sets the precision parameter used for irrational calculations.
The lesser between numerator and denominator is limited to 2#xp.

If p is less than or equal to INT_MAX, sets the precision parameter used for irrational calculations to p.

Exceptions

‘ std: :invalid_argument ‘ Thrown if p is greater than INT_MAX.

9.1.44 void Parma_Polyhedra_Library::set_rounding_for PPL() [inline]

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

This is performed automatically at initialization-time. Calling this function is needed only if restore_pre_-
PPL_rounding() has been previously called.

9.1.45 void Parma_Polyhedra_Library::restore_pre PPL rounding() [inline]

Sets the FPU rounding mode as it was before initialization of the PPL.

This is important if the application uses floating-point computations outside the PPL. It is crucial when the
application uses functions from a mathematical library that are not guaranteed to work correctly under all
rounding modes.

After calling this function it is absolutely necessary to call set_rounding_for_PPL() before using any PPL
abstractions based on floating point numbers. This is performed automatically at finalization-time.

9.2 Parma_Polyhedra Library::I0_Operators Namespace Reference

All input/output operators are confined to this namespace.

Functions

e std::string wrap_string (const std::string &src_string, unsigned indent_depth, unsigned preferred_-
first_line_length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

94 CONTENTS

9.2.1 Detailed Description

All input/output operators are confined to this namespace. This is done so that the library’s input/output
operators do not interfere with those the user might want to define. In fact, it is highly unlikely that any
predefined I/O operator will suit the needs of a client application. On the other hand, those applications for

which the PPL I/O operator are enough can easily obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_ Library::IO_Operators;

would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ...;
copy (cs.begin(), cs.end()
ostream_iterator<Constraint> (cout, "\n"));

the Parma_Polyhedra_Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

9.2.2 Function Documentation

9.2.2.1 std::string Parma_Polyhedra_Library::10_Operators::wrap_string (const std::string & src_string,
unsigned indent_depth, unsigned preferred_first_line_length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

Parameters

src_string | The source string holding the lines to wrap.

indent_depth | The indentation depth.

preferred_first- | The preferred length for the first line of text.
_line_length

preferred_line- | The preferred length for all the lines but the first one.
_length

Returns

The wrapped string.

9.3 std Namespace Reference

The standard C++ namespace.

9.3.1 Detailed Description

The standard C++ namespace. The Parma Polyhedra Library conforms to the C++ standard and, in partic-
ular, as far as reserved names are concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines
several template specializations for the standard library class template numeric_limits (18.2.1, [lib.-
limits]).

(J

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10 Class Documentation 95

Note

The PPL provides the specializations of the class template numeric_limits not only for PPL-
specific numeric types, but also for the GMP types mpz_class and mpg_class. These specializa-
tions will be removed as soon as they will be provided by the C++ interface of GMP.

10 Class Documentation

10.1 Parma_Polyhedra_Library::Approximable Reference Class Reference

A concrete expression representing a reference to some approximable.

#include <ppl.hh>

10.1.1 Detailed Description

A concrete expression representing a reference to some approximable.

The documentation for this class was generated from the following file:

e ppl.hh

10.2 Parma_Polyhedra_Library::Approximable Reference_Common< Target > Class Tem-
plate Reference

Base class for references to some approximable.

#include <ppl.hh>

10.2.1 Detailed Description
template <typename Target>>class Parma_Polyhedra_Library::Approximable_Reference_Common< Target >

Base class for references to some approximable.

The documentation for this class was generated from the following file:

e ppl.hh

10.3 Parma_Polyhedra Library::PIP_Tree _Node::Artificial Parameter Class Reference

Artificial parameters in PIP solution trees.

#include <ppl.hh>

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

96

CONTENTS

Inheritance diagram for Parma_Polyhedra_Library::PIP_Tree_Node:: Artificial_Parameter:

Parma_Polyhedra_Library
::Linear_Expression

Parma_Polyhedra_Library
::PIP_Tree_Node::Arificial
_Parameter

Public Member Functions

Artificial_Parameter ()
Default constructor: builds a zero artificial parameter.
Artificial_Parameter (const Linear_Expression &expr, Coefficient_traits::const_reference d)
Constructor.
Artificial_Parameter (const Artificial_Parameter &y)
Copy constructor.
Coefficient_traits::const_reference denominator () const
Returns the normalized (i.e., positive) denominator.
void m_swap (Artificial_Parameter &y)
Swaps «this with y.
bool operator== (const Artificial Parameter &y) const
Returns true if and only if xt his and y are equal.
bool operator!= (const Artificial_Parameter &y) const
Returns true if and only if ¥t his and y are different.
void ascii_dump () const
Writes to std: : cerr an ASCII representation of xthis.
void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.
void print () const
Prints xthis to std: :cerrusing operator<<.
bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthi s.
memory_size_type external_memory_in_bytes () const

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.3 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_Parameter Class Reference 97

Returns the size in bytes of the memory managed by xthis.
¢ bool OK () const

Returns t rue if and only if the parameter is well-formed.

Related Functions
(Note that these are not member functions.)

* void swap (PIP_Tree_Node::Artificial_Parameter &x, PIP_Tree_Node::Artificial_Parameter &y)

Swaps x with y.
* std::ostream & operator<< (std::ostream &os, const PIP_Tree_Node::Artificial_Parameter &x)

Output operator.
¢ void swap (PIP_Tree_Node::Artificial_Parameter &x, PIP_Tree_Node::Artificial_Parameter &y)

Additional Inherited Members
10.3.1 Detailed Description

Artificial parameters in PIP solution trees.

These parameters are built from a linear expression combining other parameters (constant term included)
divided by a positive integer denominator. Coefficients at variables indices corresponding to PIP problem
variables are always zero.

10.3.2 Constructor & Destructor Documentation

10.3.2.1 Parma_Polyhedra_Library::PIP_Tree_Node::Artificial_ Parameter::Artificial_Parameter (const
Linear_Expression & expr, Coefficient_traits::const_reference d)

Constructor.

expr
i

Builds artificial parameter

Parameters

expr | The expression that, after normalization, will form the numerator of the artificial pa-
rameter.

d | The integer constant that, after normalization, will form the denominator of the artificial
parameter.

Exceptions

‘ std: :invalid_argument ‘ Thrown if d is zero.

Normalization will ensure that the denominator is positive.

10.3.3 Member Function Documentation

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

98 CONTENTS

10.3.3.1 bool Parma_Polyhedra_Library::PIP_Tree_Node::Artificial Parameter::operator==(const
Artificial_Parameter & y) const

Returns t rue if and only if xthis and y are equal.

Note that two artificial parameters having different space dimensions are considered to be different.

10.3.4 Friends And Related Function Documentation

10.3.4.1 void swap (PIP_Tree_Node::Artificial_Parameter & X, PIP_Tree_Node::Artificial_-
Parameter & y) [related]

Swaps x with y.

10.3.4.2 std::ostream & operator<< (std::ostream & os, const PIP_Tree_Node::Artificial_Parameter
&x) [related]

Output operator.

10.3.4.3 void swap (PIP_Tree_Node::Artificial_Parameter & X, PIP_Tree_Node::Artificial_-
Parameter &y) [related]

The documentation for this class was generated from the following file:

* ppl.hh

10.4 Parma_Polyhedra Library::BD Shape< T > Class Template Reference

A bounded difference shape.
#include <ppl.hh>

Public Types

* typedef T coefficient_type_base

The numeric base type upon which bounded differences are built.

* typedef N coefficient_type

The (extended) numeric type of the inhomogeneous term of the inequalities defining a BDS.

Public Member Functions

* void ascii_dump () const
Writes to std: : cerr an ASCII representation of xthis.
* void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.
* void print () const
Prints xthisto std: :cerrusing operator<<.
¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 99

Returns the total size in bytes of the memory occupied by xthis.
* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.
¢ int32_t hash_code () const

Returns a 32-bit hash code for xthis.

Constructors, Assignment, Swap and Destructor

* BD_Shape (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)

Builds a universe or empty BDS of the specified space dimension.

* BD_Shape (const BD_Shape &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy constructor.
¢ template<typename U >
BD_Shape (const BD_Shape< U > &y, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a conservative, upward approximation of y.
» BD_Shape (const Constraint_System &cs)

Builds a BDS from the system of constraints cs.

* BD_Shape (const Congruence_System &cgs)

Builds a BDS from a system of congruences.

» BD_Shape (const Generator_System &gs)

Builds a BDS from the system of generators gs.
* BD_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a BDS from the polyhedron ph.
¢ template<typename Interval >
BD_Shape (const Box< Interval > &box, Complexity_Class complexity=ANY_COMPLEXIT-
Y)
Builds a BDS out of a box.
* BD_Shape (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a BDS out of a grid.
* template<typename U >

BD_Shape (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_COMPL-
EXITY)

Builds a BDS from an octagonal shape.
* BD_Shape & operator= (const BD_Shape &y)

The assignment operator (xthis and y can be dimension-incompatible).
* void m_swap (BD_Shape &y)

Swaps xthis with y (xthis and y can be dimension-incompatible).
e ~BD_Shape ()

Destructor.

Member Functions that Do Not Modify the BD_Shape

» dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.
* dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xthis.
* Constraint_System constraints () const

Returns a system of constraints defining xthis.
* Constraint_System minimized_constraints () const

Returns a minimized system of constraints defining xthis.
* Congruence_System congruences () const

Returns a system of (equality) congruences satisfied by xt his.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

100

CONTENTS

Congruence_System minimized_congruences () const
Returns a minimal system of (equality) congruences satisfied by xt his with the same affine dimension
as xthis.
bool bounds_from_above (const Linear_Expression &expr) const
Returns t rue if and only if expr is bounded from above in xthis.
bool bounds_from_below (const Linear_Expression &expr) const
Returns t rue if and only if expr is bounded from below in xthis.
bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const
Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.
bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const
Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.
bool minimize (const Linear_Expression &expr, Coefficient &inf _n, Coefficient &inf_d, bool
&minimum) const
Returns true if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.
bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const
Returns true if and only if xt his is not empty and expzr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.
bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const
Returns t rue if and only if there exist a unique value val such that xt his saturates the equality expr
= val.
bool contains (const BD_Shape &y) const
Returns t rue if and only if xt his contains y.
bool strictly_contains (const BD_Shape &y) const
Returns t rue if and only if xt his strictly contains y.
bool is_disjoint_from (const BD_Shape &y) const
Returns true if and only if xt his and y are disjoint.
Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between xt his and the constraint c.
Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between xt his and the congruence cg.
Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between xt his and the generator g.
bool is_empty () const
Returns t rue if and only if xt his is an empty BDS.
bool is_universe () const
Returns t rue if and only if xt his is a universe BDS.
bool is_discrete () const
Returns t rue if and only if xt his is discrete.
bool is_topologically_closed () const
Returns true if and only if ¥t his is a topologically closed subset of the vector space.
bool is_bounded () const
Returns t rue if and only if xt his is a bounded BDS.
bool contains_integer_point () const
Returns true if and only if ¥t his contains at least one integer point.
bool constrains (Variable var) const
Returns t rue if and only if var is constrained in xthis.

bool OK () const

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 101

Returns t rue if and only if ¥t hi s satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the BD_Shape

void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of bounded differences defining xthis.
void add_congruence (const Congruence &cg)
Adds a copy of congruence cqg to the system of congruences of xthis.
void add_constraints (const Constraint_System &cs)
Adds the constraints in cs to the system of bounded differences defining *thi s.
void add_recycled_constraints (Constraint_System &cs)
Adds the constraints in cs to the system of constraints of xt his.
void add_congruences (const Congruence_System &cgs)
Adds to xthis constraints equivalent to the congruences in cgs.
void add_recycled_congruences (Congruence_System &cgs)
Adds to xt his constraints equivalent to the congruences in cgs.
void refine_with_constraint (const Constraint &c)
Uses a copy of constraint c to refine the system of bounded differences defining xthi s.
void refine_with_congruence (const Congruence &cg)
Uses a copy of congruence cg to refine the system of bounded differences of xt his.
void refine_with_constraints (const Constraint_System &cs)
Uses a copy of the constraints in cs to refine the system of bounded differences defining xthis.
void refine_with_congruences (const Congruence_System &cgs)
Uses a copy of the congruences in cgs to refine the system of bounded differences defining xthis.
template<typename Interval_Info >
void refine_with_linear_form_inequality (const Linear_Form< Interval< T, Interval_Info > >
&left, const Linear_Form< Interval< T, Interval_Info > > &right)
Refines the system of BD_Shape constraints defining xt his using the constraint expressed by left <
right.
template <typename Interval_Info >
void generalized_refine_with_linear_form_inequality (const Linear_Form< Interval< T, Interval-
_Info > > &left, const Linear_Form< Interval< T, Interval_Info > > &right, Relation_Symbol
relsym)
Refines the system of BD_Shape constraints defining xt his using the constraint expressed by left i<i
right, where X is the relation symbol specified by relsym.
template <typename U >
void export_interval_constraints (U &dest) const
Applies to dest the interval constraints embedded in xthis.
void unconstrain (Variable var)
Computes the cylindrification of *this with respect to space dimension var, assigning the result to
*xthis.
void unconstrain (const Variables_Set &vars)
Computes the cylindrification of xt hi s with respect to the set of space dimensions vars, assigning the
result to xthis.
void intersection_assign (const BD_Shape &y)
Assigns to xthis the intersection of xthis and y.
void upper_bound_assign (const BD_Shape &y)
Assigns to xt his the smallest BDS containing the union of xthis and y.
bool upper_bound_assign_if_exact (const BD_Shape &y)
If the upper bound of xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.
bool integer_upper_bound_assign_if_exact (const BD_Shape &y)
If the integer upper bound of xthis and y is exact, it is assigned to xthis and true is returned;
otherwise false is returned.

void difference_assign (const BD_Shape &y)

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

102

CONTENTS

Assigns to xt his the smallest BD shape containing the set difference of xthis and y.
bool simplify_using_context_assign (const BD_Shape &y)
Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.
void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_reference
denominator=Coefficient_one())

Assigns to xthis the affine image of xthis under the function mapping variable var into the affine
expression specified by expr and denominator.

template<typename Interval_Info >

void affine_form_image (Variable var, const Linear_Form< Interval< T, Interval_Info > > &If)

Assigns to xthis the affine form image of xthis under the function mapping variable var into the
affine expression(s) specified by 1f.
void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xt his the affine preimage of xt his under the function mapping variable var into the affine
expression specified by expr and denominator.
void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

denominator’ where >

Assigns to xthis the image of xt his with respect to the affine relation var’ >
is the relation symbol encoded by relsym.
void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to xthis the image of xthis with respect to the affine relation 1hs' <1 rhs, where < is the
relation symbol encoded by relsym.
void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

denominator”’ where

Assigns to xt his the preimage of xt his with respect to the affine relation var’ <
< is the relation symbol encoded by relsym.
void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xt his the preimage of xt his with respect to the affine relation 1hs' > rhs, where < is the
relation symbol encoded by relsym.
void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xt his the image of xt his with respect to the bounded affine relation ﬁ < var’ <
ub_expr

enominator”

d
void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the preimage of xthis with respect to the bounded affine relation 3_>=—=""— Ibexpr
enominator
var’ < dub#_xr’)r.
— denominator

void time_elapse_assign (const BD_Shape &y)

Assigns to xt his the result of computing the time-elapse between xthis and y.
void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_Integer
_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System *cs_p=0,
unsigned complexity_threshold=16, bool wrap_individually=true)

Wraps the specified dimensions of the vector space.
void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens xt his by dropping some points with non-integer coordinates.
void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class complex-
ity=ANY_COMPLEXITY)
Possibly tightens xt hi s by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.
void topological_closure_assign ()
Assigns to xthis its topological closure.

void CC76_extrapolation_assign (const BD_Shape &y, unsigned xtp=0)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 103

Assigns to xthis the result of computing the CC76-extrapolation between xthis and y.
* template<typename Iterator >
void CC76_extrapolation_assign (const BD_Shape &y, Iterator first, Iterator last, unsigned xtp=0)

Assigns to xthis the result of computing the CC76-extrapolation between *this and y.
» void BHMZO05_widening_assign (const BD_Shape &y, unsigned *tp=0)
Assigns to xt his the result of computing the BHMZ05-widening of *xthis and y.
* void limited_BHMZ05_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs,
unsigned *tp=0)
Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.
* void CC76_narrowing_assign (const BD_Shape &y)
Assigns to xt his the result of restoring in y the constraints of xt hi s that were lost by CC76-extrapolation
applications.
* void limited_CC76_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs,
unsigned xtp=0)
Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of xt his.
» void H79_widening_assign (const BD_Shape &y, unsigned *tp=0)
Assigns to xthis the result of computing the H79-widening between xthis and y.
* void widening_assign (const BD_Shape &y, unsigned *tp=0)
Same as H79_widening_assign(y, tp).
* void limited_H79_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs, un-
signed *tp=0)
Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of xthis.

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old BDS into the new space.
* void add_space_dimensions_and_project (dimension_type m)

Adds m new dimensions to the BDS and does not embed it in the new vector space.
* void concatenate_assign (const BD_Shape &y)

Assigns to xt his the concatenation of xthis and y, taken in this order.
* void remove_space_dimensions (const Variables_Set &vars)

Removes all the specified dimensions.
* void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions so that the resulting space will have dimension new_dimension.
¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.
* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.
* void fold_space_dimensions (const Variables_Set &vars, Variable dest)

Folds the space dimensions in vars into dest.
¢ template<typename Interval_Info >
void refine_fp_interval_abstract_store (Box< Interval< T, Interval_Info > > &store) const

Refines st ore with the constraints defining xthis.

Static Public Member Functions

* static dimension_type max_space_dimension ()

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

104

CONTENTS

Returns the maximum space dimension that a BDS can handle.

* static bool can_recycle_constraint_systems ()

Returns false indicating that this domain cannot recycle constraints.

* static bool can_recycle_congruence_systems ()

Returns false indicating that this domain cannot recycle congruences.

Related Functions

(Note that these are not member functions.)

template<typename T >

std::ostream & operator< < (std::ostream &s, const BD_Shape< T > &bds)
Output operator.

template<typename T >

void swap (BD_Shape< T > &x, BD_Shape< T > &y)
Swaps x with y.

template<typename T >

bool operator== (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns t rue if and only if x and y are the same BDS.

template<typename T >

bool operator!= (const BD_Shape< T > &x, const BD_Shape< T > &y)
Returns t rue if and only if x and y are not the same BDS.

template<typename To , typename T >

bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-

D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)
Computes the rectilinear (or Manhattan) distance between x and y.

template <typename Temp , typename To , typename T >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.
template <typename Temp , typename To , typename T >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0O, Temp &tmpl,
Temp &tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.
template <typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

template<typename Temp , typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.
template <typename Temp , typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0O, Temp &tmpl,
Temp &tmp2)

Computes the euclidean distance between x and y.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 105

¢ template<typename To , typename T >
bool 1_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the Lo, distance between x and y.
* template<typename Temp , typename To , typename T >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir)

Computes the Lo distance between x and y.

* template<typename Temp , typename To , typename T >
bool 1_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, Rounding_Dir dir, Temp &tmp0O, Temp &tmpl,
Temp &tmp2)

Computes the Lo distance between x and y.

¢ template<typename T >
bool operator== (const BD_Shape< T > &x, const BD_Shape< T > &y)

¢ template<typename T >
bool operator!= (const BD_Shape< T > &x, const BD_Shape< T > &y)

¢ template<typename Temp , typename To , typename T >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmpO, Temp
&tmpl, Temp &tmp2)

* template<typename Temp , typename To , typename T >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

¢ template<typename To , typename T >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

* template<typename Temp , typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmp0, Temp
&tmpl, Temp &tmp2)

* template<typename Temp , typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

¢ template<typename To , typename T >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

¢ template<typename Temp , typename To , typename T >
bool 1_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir, Temp &tmp0O, Temp
&tmpl, Temp &tmp2)

* template<typename Temp , typename To , typename T >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

* template<typename To , typename T >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const B-
D_Shape< T > &x, const BD_Shape< T > &y, const Rounding_Dir dir)

* template<typename T >
void swap (BD_Shape< T > &x, BD_Shape< T > &y)

® template<typename T >
std::ostream & operator<< (std::ostream &s, const BD_Shape< T > &bds)

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

106 CONTENTS

10.4.1 Detailed Description
template<typename T>class Parma_Polyhedra_Library::BD_Shape< T >

A bounded difference shape.

The class template BD_Shape<T> allows for the efficient representation of a restricted kind of topologi-
cally closed convex polyhedra called bounded difference shapes (BDSs, for short). The name comes from
the fact that the closed affine half-spaces that characterize the polyhedron can be expressed by constraints
of the form +x; < k or x; — x; < k, where the inhomogeneous term £k is a rational number.

Based on the class template type parameter T, a family of extended numbers is built and used to approx-
imate the inhomogeneous term of bounded differences. These extended numbers provide a representation
for the value 400, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

* a bounded precision integer type (e.g., int32_t or int64_t);
* a bounded precision floating point type (e.g., f1loat or double);

* an unbounded integer or rational type, as provided by GMP (i.e., mpz_class ormpg_class).

The user interface for BDSs is meant to be as similar as possible to the one developed for the polyhedron
class C_Polyhedron.

The domain of BD shapes optimally supports:

* tautological and inconsistent constraints and congruences;
¢ bounded difference constraints;

* non-proper congruences (i.e., equalities) that are expressible as bounded-difference constraints.

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

A constraint is a bounded difference if it has the form
Q;T; — a;T; X b

where 1 € {<,=,>} and q;, a;, b are integer coefficients such that a; = 0, or a; = 0, or a; = a,.
The user is warned that the above bounded difference Constraint object will be mapped into a correct and
optimal approximation that, depending on the expressive power of the chosen template argument T, may
loose some precision. Also note that strict constraints are not bounded differences.

For instance, a Constraint object encoding 3x — 3y < 1 will be approximated by:

e z —y < 1,if T is a (bounded or unbounded) integer type;
crx—y< %, if T is the unbounded rational type mpg_class;

e z —y < k,where k > %, if T is a floating point type (having no exact representation for %).

On the other hand, depending from the context, a Constraint object encoding 3z — y < 1 will be either
upward approximated (e.g., by safely ignoring it) or it will cause an exception.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 107

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a BDS corresponding to a cube in R?, given as a system of constraints:

Constraint_System cs;
cs.insert (x >= 0);
cs.insert (x <= 1);
cs.insert(y >= 0
cs.insert(y <=1
cs.insert (z >= 0);
cs.insert (z <= 1
BD_Shape<T> bd(c

Since only those constraints having the syntactic form of a bounded difference are optimally supported,
the following code will throw an exception (caused by constraints 7, 8 and 9):

Constraint_System cs;
cs.insert (x >= 0);
cs.insert(x <=1
cs.insert(y >= 0
cs.insert(y <=1
cs.insert(z >= 0
cs.insert(z <=1
cs.insert (x + y <= 0); /7
cs.insert(x — z + x >=0); // 8
cs.insert (3+xz — y <= 1); // 9
BD_Shape<T> bd(cs);

10.4.2 Constructor & Destructor Documentation
10.4.2.1 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)

[inline], [explicit]

Builds a universe or empty BDS of the specified space dimension.

Parameters

num_- | The number of dimensions of the vector space enclosing the BDS;
dimensions

kind | Specifies whether the universe or the empty BDS has to be built.

10.4.2.2 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
BD_Shape< T > & y, Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.4.2.3 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_Shape<
T >::BD_Shape (const BD_Shape< U > & y, Complexity_Class complexity =
ANY_COMPLEXITY) [inline], [explicit]

Builds a conservative, upward approximation of y.

The complexity argument is ignored.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

108 CONTENTS

10.4.2.4 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Constraint_System & ¢s) [inlinel, [explicit]

Builds a BDS from the system of constraints cs.

The BDS inherits the space dimension of cs.

Parameters

‘ cs ‘ A system of BD constraints.

Exceptions

shape domain.

std::invalid_argument | Thrown if cs contains a constraint which is not optimally supported by the BD

10.4.2.5 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Congruence_System & ¢gs) [explicit]

Builds a BDS from a system of congruences.

The BDS inherits the space dimension of cgs

Parameters

‘ cgs ‘ A system of congruences.

Exceptions

BD shape domain.

std::invalid_argument | Thrown if cgs contains congruences which are not optimally supported by the

10.4.2.6 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Generator_System & gs) [explicit]

Builds a BDS from the system of generators gs.

Builds the smallest BDS containing the polyhedron defined by gs. The BDS inherits the space dimension
of gs.

Exceptions

‘ std::invalid_argument | Thrown if the system of generators is not empty but has no points.

10.4.2.7 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Polyhedron & ph, Complexity_Class complexity =ANY_COMPLEXITY) [explicit]

Builds a BDS from the polyhedron ph.

Builds a BDS containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexityis ANY_COMPLEXITY, then the BDS built is the smallest one containing

ph.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 109

10.4.2.8 template<typename T > template<typename Interval > Parma_Polyhedra_Library::BD_-
Shape< T >::BD_Shape (const Box< Interval > & box, Complexity_Class complexity =
ANY_COMPLEXITY) [inline], [explicit]

Builds a BDS out of a box.

The BDS inherits the space dimension of the box. The built BDS is the most precise BDS that includes the

box.

Parameters

box | The box representing the BDS to be built.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error

Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

10.4.2.9 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape (const
Grid & grid, Complexity_Class complexity = ANY_COMPLEXITY) [inline],

[explicit]

Builds a BDS out of a grid.

The BDS inherits the space dimension of the grid. The built BDS is the most precise BDS that includes the

grid.

Parameters

grid | The grid used to build the BDS.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

Exceptions

std::length_error

Thrown if the space dimension of grid exceeds the maximum allowed space
dimension.

10.4.2.10 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_Shape<

T >:BD_Shape (

const Octagonal_Shape< U > & 0s, Complexity_Class complexity =

ANY_COMPLEXITY) [inline], [explicit]

Builds a BDS from an octagonal shape.

The BDS inherits the space dimension of the octagonal shape. The built BDS is the most precise BDS that

includes the octagonal shape.

Parameters

os | The octagonal shape used to build the BDS.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

110 CONTENTS

Exceptions

sion.

std::length_error | Thrown if the space dimension of os exceeds the maximum allowed space dimen-

10.4.3 Member Function Documentation

10.4.3.1 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_above (const Linear_Expression & expr)const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions

| std::invalid_argument | Thrown if expr and *this are dimension-incompatible.

10.4.3.2 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_below (const Linear_Expression & expr)const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions

‘ std::invalid_argument ‘ Thrown if expr and *this are dimension-incompatible.

10.4.3.3 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum)
const [inline]

Returns t rue if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters

expr | The linear expression to be maximized subject to ¥t his;

sup_n | The numerator of the supremum value;

sup_d | The denominator of the supremum value;

maximum | true if and only if the supremum is also the maximum value.

Exceptions

‘ std::invalid_argument | Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.4.3.4 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize (
const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum,
Generator & g Jconst [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

111

Parameters

expr

The linear expression to be maximized subject to xthis;

sup_n

The numerator of the supremum value;

sup_d

The denominator of the supremum value;

maximum

true if and only if the supremum is also the maximum value;

8

When maximization succeeds, will be assigned the point or closure point where expr
reaches its supremum value.

Exceptions

‘ std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.4.3.5

template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize (const

Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const
[inline]

Returns true if and only if *this is not empty and expr is bounded from below in *this, in which
case the infimum value is computed.

Parameters

expr

The linear expression to be minimized subject to xthis;

inf_n

The numerator of the infimum value;

inf_d

The denominator of the infimum value;

minimum

true if and only if the infimum is also the minimum value.

Exceptions

\ std::invalid_argument | Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.4.3.6

template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize (const

Linear_Expression & expr, Coefficient & inf_-n, Coefficient & inf_d, bool & minimum,

Generator & g) const

[inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr

The linear expression to be minimized subject to xthis;

inf_n

The numerator of the infimum value;

inf d

The denominator of the infimum value;

minimum

true if and only if the infimum is also the minimum value;

8

When minimization succeeds, will be assigned a point or closure point where expr
reaches its infimum value.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

ﬁ

http://bugseng.com

112 CONTENTS

Exceptions

‘ std: :invalid_argument ‘ Thrown if expr and xthis are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d,minimum
and g are left untouched.

10.4.3.7 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::frequency (
const Linear_Expression & expr, Coefficient & freq_n, Coefficient & freq_d, Coefficient &
val_n, Coefficient & val_d) const

Returns t rue if and only if there exist a unique value val such that xthis saturates the equality expr
= val.

Parameters

expr | The linear expression for which the frequency is needed;

freq_n | If true is returned, the value is set to 0; Present for interface compatibility with class
Grid, where the frequency can have a non-zero value;

freq_d | If true is returned, the value is set to 1;

val_n | The numerator of val;

val_d | The denominator of val;

Exceptions

‘ std::invalid_argument | Thrown if expr and *this are dimension-incompatible.

If false isreturned, then freq n, freq d, val_n and val_d are left untouched.

10.4.3.8 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::contains (const
BD_Shape< T > &y) const

Returns t rue if and only if *this contains y.

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and y are dimension-incompatible.

10.4.3.9 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::strictly_contains
(const BD_Shape<T> &y)const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions

| std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.10 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::is_disjoint_from
(const BD_Shape< T > & y) const

Returns t rue if and only if *this and y are disjoint.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 113

Exceptions

‘ std::invalid_argument ‘ Thrown if x and y are topology-incompatible or dimension-incompatible.

10.4.3.11 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape< T
>:irelation_with (const Constraint & ¢) const

Returns the relations holding between *this and the constraint c.

Exceptions

‘ std: :invalid_argument ‘ Thrown if *this and constraint c are dimension-incompatible.

10.4.3.12 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape< T
>::relation_with (const Congruence & cg) const

Returns the relations holding between *this and the congruence cg.

Exceptions

\ std::invalid_argument | Thrown if xthis and congruence cg are dimension-incompatible.

10.4.3.13 template<typename T > Poly_Gen_Relation Parma_Polyhedra_Library::BD_Shape< T
>::relation_with (const Generator & g) const

Returns the relations holding between xthis and the generator g.

Exceptions

std::invalid_argument ‘ Thrown if *this and generator g are dimension-incompatible.

10.4.3.14 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::constrains (
Variable var) const

Returns t rue if and only if var is constrained in *this.

Exceptions

| std.::invalid_argument | Thrown if var is not a space dimension of *this.

10.4.3.15 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::add_constraint (
const Constraint & ¢)

Adds a copy of constraint c to the system of bounded differences defining xthis.

Parameters

| ¢ | The constraint to be added.

Exceptions

std::invalid_argument

Thrown if xthis and constraint ¢ are dimension-incompatible, or c is not opti-
mally supported by the BD shape domain.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

114 CONTENTS

10.4.3.16 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::add_congruence
(const Congruence & cg)

Adds a copy of congruence cg to the system of congruences of *this.

Parameters
‘ cg | The congruence to be added.

Exceptions

std::invalid_argument | Thrown if *this and congruence cg are dimension-incompatible, or cg is not
optimally supported by the BD shape domain.

10.4.3.17 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::add_constraints
(const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of bounded differences defining xthis.

Parameters
‘ cs | The constraints that will be added.

Exceptions

std::invalid_argument | Thrown if xthis and cs are dimension-incompatible, or cs contains a constraint
which is not optimally supported by the BD shape domain.

10.4.3.18 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_constraints (Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints of xthis.

Parameters
‘ cs | The constraint system to be added to xthis. The constraints in cs may be recycled.

Exceptions

std::invalid_argument | Thrown if xthis and cs are dimension-incompatible, or c¢s contains a constraint
which is not optimally supported by the BD shape domain.

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

10.4.3.19 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_congruences (const Congruence_System & ¢gs) [inline]

Adds to *this constraints equivalent to the congruences in cgs.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 115

Parameters
‘ cgs | Contains the congruences that will be added to the system of constraints of xthis.

Exceptions

std::invalid_argument | Thrown if xthis and cgs are dimension-incompatible, or cgs contains a con-
gruence which is not optimally supported by the BD shape domain.

10.4.3.20 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_congruences (Congruence_System & ¢gs) [inline]

Adds to *this constraints equivalent to the congruences in cgs.

Parameters

cgs | Contains the congruences that will be added to the system of constraints of xthis. Its
elements may be recycled.

Exceptions

std::invalid_argument | Thrown if xthis and cgs are dimension-incompatible, or cgs contains a con-
gruence which is not optimally supported by the BD shape domain.

Warning
The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

10.4.3.21 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T

>::refine_with_constraint (const Constraint & ¢) [inline]

Uses a copy of constraint c to refine the system of bounded differences defining *this.

Parameters
‘ c | The constraint. If it is not a bounded difference, it will be ignored.

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and constraint c are dimension-incompatible.

10.4.3.22 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruence (const Congruence & ¢g) [inline]

Uses a copy of congruence cg to refine the system of bounded differences of *xthis.

Parameters
‘ cg | The congruence. If it is not a bounded difference equality, it will be ignored.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

116 CONTENTS

Exceptions

‘ std::invalid_argument ‘ Thrown if xthis and congruence cg are dimension-incompatible.

10.4.3.23 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>:irefine_with_constraints (const Constraint_System & ¢s) [inline]

Uses a copy of the constraints in cs to refine the system of bounded differences defining *this.

Parameters

cs | The constraint system to be used. Constraints that are not bounded differences are
ignored.

Exceptions

\ std::invalid_argument | Thrown if xthis and cs are dimension-incompatible.

10.4.3.24 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruences (const Congruence_System & ¢gs)

Uses a copy of the congruences in cgs to refine the system of bounded differences defining xthis.

Parameters

cgs | The congruence system to be used. Congruences that are not bounded difference equal-
ities are ignored.

Exceptions

| std.::invalid_argument | Thrown if *this and cgs are dimension-incompatible.

10.4.3.25 template<typename T > template<typename Interval_Info > void Parma_Polyhedra_Library-
::BD_Shape< T >::refine_with_linear_form_inequality (const Linear_Form< Interval< T,
Interval_Info > > & left, const Linear_Form< Interval< T, Interval_Info > > & right)

Refines the system of BD_Shape constraints defining *this using the constraint expressed by left <
right.

Parameters

left | The linear form on intervals with floating point boundaries that is at the left of the
comparison operator. All of its coefficients MUST be bounded.

right | The linear form on intervals with floating point boundaries that is at the right of the
comparison operator. All of its coefficients MUST be bounded.

Exceptions

‘ std::invalid_argument ‘ Thrown if 1eft (or right) is dimension-incompatible with xthis.

This function is used in abstract interpretation to model a filter that is generated by a comparison of two
expressions that are correctly approximated by 1eft and right respectively.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 117

10.4.3.26 template<typename T > template<typename Interval_Info > void Parma_Polyhedra_Library-
::BD_Shape< T >::generalized_refine_with_linear_form_inequality (const Linear_Form<
Interval< T, Interval_Info > > & left, const Linear_Form< Interval< T, Interval_Info > > &
right, Relation_Symbol relsym) [inline]

Refines the system of BD_Shape constraints defining xthis using the constraint expressed by left
right, where i< is the relation symbol specified by relsym.

Parameters

left | The linear form on intervals with floating point boundaries that is at the left of the
comparison operator. All of its coefficients MUST be bounded.

right | The linear form on intervals with floating point boundaries that is at the right of the
comparison operator. All of its coefficients MUST be bounded.

relsym | The relation symbol.

Exceptions

std::invalid_argument | Thrown if left (or right) is dimension-incompatible with *this.

std::runtime_error | Thrown if relsym is not a valid relation symbol.

This function is used in abstract interpretation to model a filter that is generated by a comparison of two
expressions that are correctly approximated by 1left and right respectively.

10.4.3.27 template<typename T > template<typename U > void Parma_Polyhedra-
_Library::BD_Shape< T >::export_interval_constraints (U & dest)
const

Applies to de st the interval constraints embedded in *this.

Parameters

\ dest | The object to which the constraints will be added.

Exceptions

‘ std::invalid_argument | Thrown if xthis is dimension-incompatible with dest.

The template type parameter U must provide the following methods.

dimension_type space_dimension() const
returns the space dimension of the object.
void set_empty ()
sets the object to an empty object.

bool restrict_lower (dimension_type dim, const T& 1lb)

restricts the object by applying the lower bound 1b to the space dimension dim and returns false if and
only if the object becomes empty.

ﬁ'

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

118

CONTENTS

bool restrict_upper (dimension_type dim, const T& ub)

restricts the object by applying the upper bound ub to the space dimension dim and returns false if and
only if the object becomes empty.

10.4.3.28 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::unconstrain (
Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to

*this.

Parameters

‘ var | The space dimension that will be unconstrained.

Exceptions

| std.::invalid_argument | Thrown if var is not a space dimension of *this.

10.4.3.29 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::unconstrain (
const Variables_Set & vars)

Computes the cylindrification of *this with respect to the set of space dimensions vars, assigning the

result to *xthis.

Parameters

‘ vars | The set of space dimension that will be unconstrained.

Exceptions

std::invalid_argument | Thrown if xthi s is dimension-incompatible with one of the Variable objects con-

tained in vars.

10.4.3.30 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::intersection_assign (const BD_Shape<T > &y)

Assigns to xthis the intersection of xthis and y.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.31 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign (const BD_Shape<T > &y)

Assigns to xthis the smallest BDS containing the union of *this and y.

Exceptions

‘ std::invalid_argument ‘ Thrown if xthis and y are dimension-incompatible.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 119

10.4.3.32 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign_if_exact (const BD_Shape<T> &y) [inline]

If the upper bound of *xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.

Exceptions

‘ std::invalid_argument ‘ Thrown if *this and y are dimension-incompatible.

10.4.3.33 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>:integer_upper_bound assign_if_exact (const BD_Shape<T> &y) [inline]

If the integer upper bound of *t his and y is exact, it is assigned to *t his and t rue is returned; otherwise
false is returned.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

Note

The integer upper bound of two rational BDS is the smallest rational BDS containing all the integral
points of the two arguments. This method requires that the coefficient type parameter T is an integral

type.

10.4.3.34 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::difference_assign (const BD_Shape<T> &y)

Assigns to xthis the smallest BD shape containing the set difference of *this and y.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.35 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::simplify_using_context_assign (const BD_Shape< T > &y)

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions

| std.:invalid_argument | Thrown if *this and y are topology-incompatible or dimension-incompatible. |

10.4.3.36 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::affine_image (
Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference denominator
= Coefficient_one ())

Assigns to xthis the affine image of *this under the function mapping variable var into the affine
expression specified by expr and denominator.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

120

CONTENTS

Parameters

var | The variable to which the affine expression is assigned.

expr | The numerator of the affine expression.

denominator | The denominator of the affine expression.

Exceptions

std: :invalid_argument

Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *this.

10.4.3.37 template<typename T > template<typename Interval_Info > void Parma_Polyhedra_Library-
::BD_Shape< T >::affine_form_image (Variable var, const Linear_Form< Interval< T,
Interval_Info > > & If)

Assigns to xthis the affine form image of xt his under the function mapping variable var into the affine
expression(s) specified by 1f.

Parameters
var | The variable to which the affine expression is assigned.
If | The linear form on intervals with floating point coefficients that defines the affine ex-
pression. ALL of its coefficients MUST be bounded.
Exceptions

std: :invalid_argument

Thrown if 1 £ and xthis are dimension-incompatible or if var is not a dimension
of xthis.

10.4.3.38 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T >::affine_preimage
(Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference
denominator = Coefficient_one ())

Assigns to xthis the affine preimage of *this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters

var | The variable to which the affine expression is substituted.

expr | The numerator of the affine expression.

denominator | The denominator of the affine expression.

Exceptions

std: :invalid_argument

Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *this.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

10.4.3.39 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const

Linear_Expression & expr, Coefficient_traits::const_reference denominator =

Coefficient_one ())

Assigns to xthis the image of *this with respect to the affine relation var’ >

expr

denominator? where >4 is

the relation symbol encoded by relsym.

Parameters

var

The left hand side variable of the generalized affine transfer function.

relsym

The relation symbol.

expr

The numerator of the right hand side affine expression.

denominator

The denominator of the right hand side affine expression.

Exceptions

std::invalid_argument

relation symbol.

10.4.3.40

template<typename T > void Parma_Polyhedra_Library::BD_Shape< T

>::generalized_affine_image (const Linear_Expression & /hs, Relation_Symbol relsym,
const Linear_Expression & rhs)

Assigns to ¥this the image of *this with respect to the affine relation lhs’ > rhs, where < is the
relation symbol encoded by relsym.

Parameters
lhs | The left hand side affine expression.
relsym | The relation symbol.
rhs | The right hand side affine expression.
Exceptions

std::invalid_argument

strict relation symbol.

10.4.3.41

template<typename T > void Parma_Polyhedra_Library::BD_Shape< T

>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to xthis the preimage of xthis with respect to the affine relation var’ >

expr

denominator’ where >4

is the relation symbol encoded by relsym.

Parameters

var

The left hand side variable of the generalized affine transfer function.

relsym

The relation symbol.

expr

The numerator of the right hand side affine expression.

denominator

The denominator of the right hand side affine expression.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *this or if relsym is a strict

Thrown if xthis is dimension-incompatible with 1hs or rhs orif relsymisa

http://bugseng.com

122

CONTENTS

Exceptions

std: :invalid_argument

Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *xthis or if relsym is a strict
relation symbol.

10.4.3.42 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (const Linear_Expression & /hs, Relation_Symbol relsym,
const Linear_Expression & rhs)

Assigns to xthis the preimage of *this with respect to the affine relation lhs’ v rhs, where < is the
relation symbol encoded by relsym.

Parameters

lhs | The left hand side affine expression.

relsym | The relation symbol.

rhs | The right hand side affine expression.

Exceptions

std: :invalid_argument

Thrown if xthis is dimension-incompatible with 1hs or rhs orif relsymis a
strict relation symbol.

10.4.3.43 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_image (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to xthis the image of xthis with respect to the bounded affine relation

ub_expr
denominator *

Parameters

1b_expr /
denominator < var’ <

var | The variable updated by the affine relation;

Ib_expr | The numerator of the lower bounding affine expression;

ub_expr | The numerator of the upper bounding affine expression;

denominator | The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std::invalid_argument

Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and xthis
are dimension-incompatible or if var is not a space dimension of xthis.

10.4.3.44 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_preimage (Variable var, const Linear_Expression & Ib_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to xthis the preimage of *t hi s with respect to the bounded affine relation (le“'*& <var’ <

ub_expr
denominator *

nominator

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

123

Parameters

var

The variable updated by the affine relation;

Ib_expr

The numerator of the lower bounding affine expression;

ub_expr

The numerator of the upper bounding affine expression;

denominator

The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std: :invalid_argument

are dimension-incompatible or if var is not a space dimension of xthis.

10.4.3.45

template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::time_elapse_assign (const BD_Shape<T > &y)

[inline]

Assigns to xthis the result of computing the time-elapse between *this and y.

Exceptions

\ std: :invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.46

template<typename T > void Parma_Polyhedra_Library::BD_Shape< T

>::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const
Constraint_System x ¢s_p = 0, unsigned complexity_threshold = 16, bool wrap_individually =

true)

Wraps the specified dimensions of the vector space.

Parameters

vars

The set of Variable objects corresponding to the space dimensions to be wrapped.

The width of the bounded integer type corresponding to all the dimensions to be
wrapped.

The representation of the bounded integer type corresponding to all the dimensions to
be wrapped.

The overflow behavior of the bounded integer type corresponding to all the dimensions
to be wrapped.

cs_p

Possibly null pointer to a constraint system whose variables are contained in vars. If
xcs_p depends on variables not in vars, the behavior is undefined. When non-null,
the pointed-to constraint system is assumed to represent the conditional or looping
construct guard with respect to which wrapping is performed. Since wrapping requires
the computation of upper bounds and due to non-distributivity of constraint refinement
over upper bounds, passing a constraint system in this way can be more precise than
refining the result of the wrapping operation with the constraints in *cs_p.

complexity_-
threshold

A precision parameter of the wrapping operator: higher values result in possibly im-
proved precision.

wrap_-
individually

true if the dimensions should be wrapped individually (something that results in much
greater efficiency to the detriment of precision).

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and *this

http://bugseng.com

124 CONTENTS
Exceptions
std::invalid_argument | Thrown if *cs_p is dimension-incompatible with vars, or if xthis is
dimension-incompatible vars or with xcs_p.
10.4.3.47 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T

>::drop_some_non_integer_points (Complexity_Class complexity = ANY_COMPLEXITY)

Possibly tightens xthis by dropping some points with non-integer coordinates.

Parameters

complexity ‘ The maximal complexity of any algorithms used.

Note

10.4.

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

3.48 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::drop_some_non_integer_points (const Variables_Set & vars, Complexity_Class
complexity = ANY_COMPLEXITY)

Possibly tightens xthis by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars | Points with non-integer coordinates for these variables/space-dimensions can be dis-

carded.

complexity | The maximal complexity of any algorithms used.

Note

10.4.

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

3.49 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::CC76_extrapolation_assign (const BD_Shape< T > & , unsigned « t{p=0) [inline]

Assigns to xthis the result of computing the CC76-extrapolation between *this and y.

Parameters
y | A BDS that must be contained in *this.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 125

10.4.3.50 template<typename T > template<typename lterator > void Parma_Polyhedra_Library::B-
D_Shape< T >::CC76_extrapolation_assign (const BD_Shape< T > & y, Iterator first, Iterator
last, unsigned = ip=0)

Assigns to xthis the result of computing the CC76-extrapolation between *this and y.

Parameters

y | A BDS that must be contained in xthis.
first | An iterator referencing the first stop-point.
last | An iterator referencing one past the last stop-point.

tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).

Exceptions

| std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.51 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::BHMZ05_widening_assign (const BD_Shape< T > &), unsigned x {p=0)

Assigns to ¥t his the result of computing the BHMZ05-widening of *this and y.

Parameters
y | A BDS that must be contained in *this.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.4.3.52 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_BHMZ05_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned x i{p =0)

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.

Parameters
y | A BDS that must be contained in *this.
cs | The system of constraints used to improve the widened BDS.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

std::invalid_argument | Thrown if xthis, y and cs are dimension-incompatible or if cs contains a strict
inequality.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

126 CONTENTS

10.4.3.53 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>1:CC76_narrowing_assign (const BD_Shape<T > &y)

Assigns to xthis the result of restoring in y the constraints of xt hi s that were lost by CC76-extrapolation
applications.

Parameters
| y | A BDS that must contain *this.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

Note

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas xthis denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign (y) will assign to
x the result of the computation yAx.

10.4.3.54 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_CC76_extrapolation_assign (const BD_Shape< T > & y, const Constraint_System
& ¢s, unsigned « tp=0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.

Parameters
y | A BDS that must be contained in *this.
cs | The system of constraints used to improve the widened BDS.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

std::invalid_argument | Thrown if sthis, y and cs are dimension-incompatible or if cs contains a strict
inequality.

10.4.3.55 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::H79_widening_assign (const BD_Shape< T > &y, unsigned « {p=0) [inline]

Assigns to xthis the result of computing the H79-widening between *this and y.

Parameters

y | A BDS that must be contained in *this.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 127

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and y are dimension-incompatible.

10.4.3.56 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_H79_extrapolation_assign (const BD_Shape< T > & y, const Constraint_System
&cs, unsigned «tp=0) [inline]

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of *this.

Parameters
y | A BDS that must be contained in *this.
cs | The system of constraints used to improve the widened BDS.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis, y and cs are dimension-incompatible.

10.4.3.57 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old BDS into the new space.

Parameters

\ m | The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the BDS B C R? and adding a third dimension, the result will be the BDS

{(x,y,z)T e R3 | (z,y)T € B}.

10.4.3.58 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and _project (dimension_type m)

Adds m new dimensions to the BDS and does not embed it in the new vector space.

Parameters

\ m | The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the BDS B C R? and adding a third dimension, the result
will be the BDS

{(z,9,00T e R?| (x,y)" € B}.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

128 CONTENTS

10.4.3.59 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::concatenate_assign (const BD_Shape< T > &y)

Assigns to xthis the concatenation of *this and y, taken in this order.

Exceptions

max_space_dimension ().

std::length_error | Thrown if the concatenation would cause the vector space to exceed dimension

10.4.3.60 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_space_dimensions (const Variables_Set & vars)

Removes all the specified dimensions.

Parameters

\ vars \ The set of Variable objects corresponding to the dimensions to be removed.

Exceptions

tained in vars.

std::invalid_argument | Thrown if st his is dimension-incompatible with one of the Variable objects con-

10.4.3.61 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions

‘ std::invalid_argument ‘ Thrown if new_dimension is greater than the space dimension of xthis.

10.4.3.62 template<typename T > template<typename Partial_Function > void
Parma_Polyhedra_Library::BD_Shape< T >::map_space_dimensions (const
Partial_Function & pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters

‘ pfunc ‘ The partial function specifying the destiny of each dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 129

returns the maximum value that belongs to the co-domain of the partial function.

bool maps (dimension_type i, dimension_type& j
) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.4.3.63 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters

var | The variable corresponding to the space dimension to be replicated;

m | The number of replicas to be created.

Exceptions

std::invalid_argument | Thrown if var does not correspond to a dimension of the vector space.

dimension max_space_dimension ().

std::length_error | Thrown if adding m new space dimensions would cause the vector space to exceed

If xthis has space dimension n, with n > 0, and var has space dimension k < n, then the k-th space
dimension is expanded to m new space dimensions n,n + 1,...,n+m — 1.

10.4.3.64 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters
vars | The set of Variable objects corresponding to the space dimensions to be folded;
dest | The variable corresponding to the space dimension that is the destination of the folding
operation.
Exceptions

able objects contained in vars. Also thrown if dest is contained in vars.

std::invalid_argument | Thrown if *this is dimension-incompatible with dest or with one of the Vari-

If *this has space dimension n, with n > 0, dest has space dimension k& < n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and de st is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

130 CONTENTS

10.4.3.65 template<typename T > template<typename Interval_Info > void Parma_Polyhedra_Library-
::BD_Shape< T >::refine_fp_interval_abstract_store (Box< Interval< T, Interval_Info > > &
store Jconst [inline]

Refines st ore with the constraints defining xthis.

Parameters

‘ store ‘ The interval floating point abstract store to refine.

10.4.3.66 template<typename T > int32_t Parma_Polyhedra_Library::BD_Shape< T >::hash_code (
)eonst [inline]
Returns a 32-bit hash code for *this.

If x and y are such that x == y, then x.hash_code () == y.hash_code ().

10.4.4 Friends And Related Function Documentation

10.4.41 template<typename T > std::ostream & operator<< (std::ostream & s, const BD_Shape< T >
&bds) [related]
Output operator.

Writes a textual representation of bds on s: false is written if bds is an empty polyhedron; t rue is
written if bds is the universe polyhedron; a system of constraints defining bds is written otherwise, all

non

constraints separated by ", ".

10.4.4.2 template<typename T > void swap (BD_Shape< T > & x, BD_Shape< T > &y)
[related]

Swaps x with y.

10.4.4.3 template<typename T > bool operator==(const BD_Shape< T > & X, const BD_Shape< T >
&y) [related]

Returns t rue if and only if x and y are the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value false is returned.

10.4.4.4 template<typename T > bool operator!=(const BD_Shape< T > & x, const BD_Shape< T >
&y) [related]

Returns t rue if and only if x and y are not the same BDS.

Note that x and y may be dimension-incompatible shapes: in this case, the value t rue is returned.

10.4.4.5 template<typename To, typename T > bool rectilinear_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const BD_Shape< T > &),
Rounding Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns £alse otherwise.

The direction of the approximation is specified by dir.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.4 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 131

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.4.4.6 template<typename Temp , typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x, const
BD_Shape< T > & y, Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.
All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-

Policy>.

10.4.4.7 template<typename Temp , typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > & §, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1l and tmp?2.

10.4.4.8 template<typename To , typename T > bool euclidean_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const BD_Shape< T > &),
Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.4.49 template<typename Temp , typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & x, const
BD_Shape< T > & §, Rounding Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and vy is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

132 CONTENTS

10.4.410 template<typename Temp , typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmp1l and tmp2.

10.4.4.11 template<typename To , typename T > bool L_infinity_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & J,
Rounding Dir dir) [related]

Computes the L, distance between x and y.

If the L., distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.4.412 template<typename Temp , typename To , typename T > bool Linfinity_distance assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > & §, Rounding Dir dir) [related]

Computes the L, distance between x and y.

If the L., distance between x and y is defined, stores an approximation of it into r and returns true;
returns £alse otherwise.

The direction of the approximation is specified by dir.
All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-

Policy>.

10.4.4.13 template<typename Temp , typename To , typename T > bool L infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > & §, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

Computes the L, distance between x and y.

If the L., distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmp1l and tmp2.

10.4.4.14 template<typename T > bool operator==(const BD_Shape< T > & x, const BD_Shape< T >
&y) I[related]

10.4.4.15 template<typename T > bool operator!= (const BD_Shape< T > & x, const BD_Shape< T >
&y) I[related]

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.5 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference 133

10.4.4.16

10.4.417

10.4.4.18

10.4.4.19

10.4.4.20

10.4.4.21

10.4.4.22

10.4.4.23

10.4.4.24

10.4.4.25

10.4.4.26

template<typename Temp , typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

template<typename Temp , typename To , typename T > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding Dir dir) [related]

template<typename To , typename T > bool rectilinear_distance_assign (Checked_Number<
To, Extended_Number _Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & J,
const Rounding Dir dir) [related]

template<typename Temp , typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

template<typename Temp , typename To , typename T > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding Dir dir) [related]

template<typename To , typename T > bool euclidean_distance_assign (Checked_Number<
To, Extended_Number _Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & J,
const Rounding Dir dir) [related]

template<typename Temp , typename To , typename T > bool Linfinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

template<typename Temp , typename To , typename T > bool L_infinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const BD_Shape< T > & X, const
BD_Shape< T > &y, const Rounding Dir dir) [related]

template<typename To , typename T > bool Linfinity_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const BD_Shape< T > & x, const BD_Shape< T > & J,
const Rounding Dir dir) [related]

template<typename T > void swap (BD_Shape< T > & x, BD_Shape<T > &y)
[related]

template<typename T > std::ostream & operator<< (std::ostream & s, const BD_Shape< T
>&bds) [related]

The documentation for this class was generated from the following file:

e ppl.hh

10.5 Parma_Polyhedra_Library::BHRZ03 Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

#include <ppl.hh>

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

134 CONTENTS

Classes

* struct Compare

A total ordering on BHRZ03 certificates.

Public Member Functions

BHRZ03_Certificate ()

Default constructor.

* BHRZO03_Certificate (const Polyhedron &ph)

Constructor: computes the certificate for ph.

* BHRZO03_Certificate (const BHRZ03_Certificate &y)

Copy constructor.

¢ ~BHRZ03_Certificate ()

Destructor.

* int compare (const BHRZ03_Certificate &y) const

The comparison function for certificates.

* int compare (const Polyhedron &ph) const

Compares *this with the certificate for polyhedron ph.

10.5.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note

Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZ03_Certificate can certify the convergence of both the BHRZ03 and the H79 widenings.

10.5.2 Member Function Documentation

10.5.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const BHRZ03_Certificate & y)
const

The comparison function for certificates.

Returns

—1, 0 or 1 depending on whether xthis is smaller than, equal to, or greater than y, respectively.

Compares xthis with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

The documentation for this class was generated from the following file:

e ppl.hh

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.6 Parma_Polyhedra_Library::Binary_Operator Class Reference 135

10.6 Parma_Polyhedra Library::Binary Operator Class Reference

A binary operator applied to two concrete expressions.

#include <ppl.hh>

10.6.1 Detailed Description
A binary operator applied to two concrete expressions.
The documentation for this class was generated from the following file:

e pplL.hh

10.7 Parma_Polyhedra_Library::Binary_Operator Common< Target > Class Template Ref-
erence

Base class for binary operator applied to two concrete expressions.

#include <ppl.hh>

Public Member Functions

* Concrete_Expression_BOP binary_operator () const

Returns a constant identifying the operator of xthis.
* const Concrete_Expression
< Target > * left_hand_side () const

Returns the left-hand side of xthis.
* const Concrete_Expression
< Target > * right_hand_side () const

Returns the right-hand side of xthis.

10.7.1 Detailed Description
template<typename Target>>class Parma_Polyhedra_Library::Binary_Operator_Common< Target >

Base class for binary operator applied to two concrete expressions.

The documentation for this class was generated from the following file:

e pplLhh

10.8 Parma_Polyhedra Library::Box< ITV > Class Template Reference

A not necessarily closed, iso-oriented hyperrectangle.

#include <ppl.hh>

Public Types

* typedef ITV interval_type

The type of intervals used to implement the box.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

136 CONTENTS

Public Member Functions

e const ITV & get_interval (Variable var) const

Returns a reference the interval that bounds var.
¢ void set_interval (Variable var, const ITV &i)

Sets to 1 the interval that bounds var.

¢ bool has_lower_bound (Variable var, Coefficient &n, Coefficient &d, bool &closed) const
If the space dimension of var is unbounded below, return false. Otherwise return true and set n, d
and closed accordingly.

* bool has_upper_bound (Variable var, Coefficient &n, Coefficient &d, bool &closed) const
If the space dimension of var is unbounded above, return false. Otherwise return true and set n, d
and closed accordingly.

* Constraint_System constraints () const
Returns a system of constraints defining xt his.

* Constraint_System minimized_constraints () const
Returns a minimized system of constraints defining xthis.

* Congruence_System congruences () const
Returns a system of congruences approximating xthis.

» Congruence_System minimized_congruences () const
Returns a minimized system of congruences approximating *this.

* memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const
Returns the size in bytes of the memory managed by xthis.

e int32_t hash_code () const
Returns a 32-bit hash code for xthis.

* void ascii_dump () const
Writes to std: : cerr an ASCII representation of xthis.

¢ void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.

* void print () const
Prints xthisto std: :cerrusing operator<<.

* void set_empty ()

Causes the box to become empty, i.e., to represent the empty set.

Constructors, Assignment, Swap and Destructor

* Box (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a universe or empty box of the specified space dimension.

* Box (const Box &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy constructor.

¢ template<typename Other_ITV >

Box (const Box< Other_ITV > &y, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a conservative, upward approximation of y.

* Box (const Constraint_System &cs)
Builds a box from the system of constraints cs.

* Box (const Constraint_System &cs, Recycle_Input dummy)
Builds a box recycling a system of constraints cs.

* Box (const Generator_System &gs)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 137

Builds a box from the system of generators gs.
Box (const Generator_System &gs, Recycle_Input dummy)
Builds a box recycling the system of generators gs.
Box (const Congruence_System &cgs)
Box (const Congruence_System &cgs, Recycle_Input dummy)
template <typename T >
Box (const BD_Shape< T > &bds, Complexity_Class complexity=POLYNOMIAL_COMPLE-
XITY)
Builds a box containing the BDS bds.
template <typename T >
Box (const Octagonal_Shape< T > &oct, Complexity_Class complexity=POLYNOMIAL_CO-
MPLEXITY)

Builds a box containing the octagonal shape oct.
Box (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a box containing the polyhedron ph.
Box (const Grid &gr, Complexity_Class complexity=POLYNOMIAL_COMPLEXITY)
Builds a box containing the grid gr.
template<typename D1 , typename D2 , typename R >
Box (const Partially_Reduced_Product< D1, D2, R > &dp, Complexity_Class complexity=AN-
Y_COMPLEXITY)
Builds a box containing the partially reduced product dp.
Box & operator= (const Box &y)
The assignment operator (+this and y can be dimension-incompatible).
void m_swap (Box &y)

Swaps xthis with y (xthis and y can be dimension-incompatible).

Member Functions that Do Not Modify the Box

dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.
dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xthis.
bool is_empty () const

Returns t rue if and only if xt his is an empty box.
bool is_universe () const

Returns true if and only if ¥t his is a universe box.
bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.
bool is_discrete () const

Returns true if and only if xt his is discrete.
bool is_bounded () const

Returns t rue if and only if xt his is a bounded box.
bool contains_integer_point () const

Returns t rue if and only if xt his contains at least one integer point.
bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xthis.
Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between xthis and the constraint c.
Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between xt his and the congruence cg.
Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between xt his and the generator g.
bool bounds_from_above (const Linear_Expression &expr) const

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

138

CONTENTS

Returns t rue if and only if expr is bounded from above in xthis.
bool bounds_from_below (const Linear_Expression &expr) const
Returns t rue if and only if expr is bounded from below in xthis.
bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const
Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.
bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const
Returns true if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.
bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const
Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.
bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const
Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.
bool frequency (const Linear_Expression &expr, Coefficient &freq_n, Coefficient &freq_d, Co-
efficient &val_n, Coefficient &val_d) const
Returns t rue if and only if there exist a unique value val such that xt his saturates the equality expr
= val.
bool contains (const Box &y) const
Returns t rue if and only if xt his contains y.
bool strictly_contains (const Box &y) const
Returns t rue if and only if *t his strictly contains y.
bool is_disjoint_from (const Box &y) const
Returns t rue if and only if ¥t his and y are disjoint.

bool OK () const

Returns t rue if and only if xt hi s satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the Box

* void add_constraint (const Constraint &c)

Adds a copy of constraint c to the system of constraints defining *this.
void add_constraints (const Constraint_System &cs)

Adds the constraints in cs to the system of constraints defining xt his.
void add_recycled_constraints (Constraint_System &cs)

Adds the constraints in cs to the system of constraints defining xt his.
void add_congruence (const Congruence &cg)

Adds to xt his a constraint equivalent to the congruence cg.
void add_congruences (const Congruence_System &cgs)

Adds to xthis constraints equivalent to the congruences in cgs.
void add_recycled_congruences (Congruence_System &cgs)

Adds to xt his constraints equivalent to the congruences in cgs.
void refine_with_constraint (const Constraint &c)

Use the constraint c to refine xthis.
void refine_with_constraints (const Constraint_System &cs)

Use the constraints in cs to refine *this.
void refine_with_congruence (const Congruence &cg)

Use the congruence cg to refine xthis.
void refine_with_congruences (const Congruence_System &cgs)

Use the congruences in cgs to refine xthis.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 139

* void propagate_constraint (const Constraint &c)

Use the constraint c for constraint propagation on xthis.
* void propagate_constraints (const Constraint_System &cs, dimension_type max_iterations=0)

Use the constraints in cs for constraint propagation on xthis.
¢ void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
*this.
¢ void unconstrain (const Variables_Set &vars)

Computes the cylindrification of xt hi s with respect to the set of space dimensions vars, assigning the
result to xthis.
* void intersection_assign (const Box &y)

Assigns to xthis the intersection of xthis and y.
* void upper_bound_assign (const Box &y)

Assigns to xt his the smallest box containing the union of xthis and y.
* bool upper_bound_assign_if_exact (const Box &y)

If the upper bound of xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.
* void difference_assign (const Box &y)

Assigns to xt his the difference of xthis and y.
* bool simplify_using_context_assign (const Box &y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.
* void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_reference
denominator=Coefficient_one())

Assigns to xthis the affine image of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.
* void affine_form_image (Variable var, const Linear_Form< ITV > &lIf)

Assigns to xthis the affine form image of xthis under the function mapping variable var into the
affine expression(s) specified by 1f.
* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xthis the affine preimage of xt his under the function mapping variable var to the affine
expression specified by expr and denominator.
* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

Assigns to xthis the image of xt his with respect to the generalized affine relation var’ b =2

where X is the relation symbol encoded by relsym.
* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

Assigns to xt his the preimage of xt his with respect to the generalized affine relation var’ > gt ——,

where < is the relation symbol encoded by relsym.
* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xt his the image of xt his with respect to the generalized affine relation lhs’ t<i rhs, where
> is the relation symbol encoded by relsym.
* void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xthis the preimage of xthis with respect to the generalized affine relation lhs' > rhs,
where] is the relation symbol encoded by relsym.
* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

lbexpr o oy <

Assigns to xt his the image of *t his with respect to the bounded affine relation ; ==""— <

ub_expr
enominator”

d
* void bounded_affine_preimage (Variable var, const Linear_Expression &Ib_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

140

CONTENTS

1b_expr

Assigns to xthis the preimage of xthis with respect to the bounded affine relation ;== — <

var’ < T ub_expr
— denominator

void time_elapse_assign (const Box &y)
Assigns to xt his the result of computing the time-elapse between xthis and y.
void topological_closure_assign ()
Assigns to xthis its topological closure.
void wrap_assign (const Variables_Set &vars, Bounded_Integer_Type_Width w, Bounded_Integer-
_Type_Representation r, Bounded_Integer_Type_Overflow o, const Constraint_System xcs_p=0,
unsigned complexity_threshold=16, bool wrap_individually=true)
Wraps the specified dimensions of the vector space.
void drop_some_non_integer_points (Complexity_Class complexity=ANY_COMPLEXITY)
Possibly tightens xt his by dropping some points with non-integer coordinates.
void drop_some_non_integer_points (const Variables_Set &vars, Complexity_Class complex-
ity=ANY_COMPLEXITY)
Possibly tightens xt his by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.
template<typename T >
Enable_If< Is_Same< T, Box >
w:value &&Is_Same_ Or_Derived
< Interval_Base, ITV >::value,
void >::type CC76_widening_assign (const T &y, unsigned xtp=0)
Assigns to xt his the result of computing the CC76-widening between xthis and y.
template <typename T , typename Iterator >
Enable_If< Is_Same< T, Box >
w:value &&Is_Same_Or_Derived
< Interval_Base, ITV >::value,
void >::type CC76_widening_assign (const T &y, Iterator first, Iterator last)
Assigns to xt his the result of computing the CC76-widening between xthis and y.
void widening_assign (const Box &y, unsigned *tp=0)
Same as CC76_widening_assign(y, tp).
void limited_CC76_extrapolation_assign (const Box &y, const Constraint_System &cs, unsigned
*tp=0)
Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of xt his.
template<typename T >
Enable_If< Is_Same< T, Box >
w:value &&Is_Same_Or_Derived
< Interval_Base, ITV >::value,
void >::itype CC76_narrowing_assign (const T &y)
Assigns to xt his the result of restoring in y the constraints of *t hi s that were lost by CC76-extrapolation
applications.

Member Functions that May Modify the Dimension of the Vector Space

void add_space_dimensions_and_embed (dimension_type m)
Adds m new dimensions and embeds the old box into the new space.
void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the box and does not embed it in the new vector space.
void concatenate_assign (const Box &y)
Seeing a box as a set of tuples (its points), assigns to xthis all the tuples that can be obtained by
concatenating, in the order given, a tuple of xt his with a tuple of y.
void remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions.
void remove_higher_space_dimensions (dimension_type new_dimension)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8

Parma_Polyhedra_Library::Box< ITV > Class Template Reference 141

Removes the higher dimensions so that the resulting space will have dimension new_dimension.
¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)
Remaps the dimensions of the vector space according to a partial function.
* void expand_space_dimension (Variable var, dimension_type m)
Creates m copies of the space dimension corresponding to var.
* void fold_space_dimensions (const Variables_Set &vars, Variable dest)
Folds the space dimensions in vars into dest.

Static Public Member Functions

static dimension_type max_space_dimension ()

Returns the maximum space dimension that a Box can handle.
static bool can_recycle_constraint_systems ()

Returns false indicating that this domain does not recycle constraints.
static bool can_recycle_congruence_systems ()

Returns false indicating that this domain does not recycle congruences.

Related Functions

(Note that these are not member functions.)

template<typename ITV >
void swap (Box< ITV > &x, Box< ITV > &y)
Swaps x with y.
template<typename ITV >
bool operator== (const Box< ITV > &x, const Box< ITV > &y)

Returns t rue if and only if x and y are the same box.

template <typename ITV >
bool operator!= (const Box< ITV > &x, const Box< ITV > &y)
Returns t rue if and only if x and y are not the same box.
template<typename ITV >
std::ostream & operator<< (std::ostream &s, const Box< ITV > &box)
Output operator.
template<typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)
Computes the rectilinear (or Manhattan) distance between x and y.
template<typename Temp , typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)
Computes the rectilinear (or Manhattan) distance between x and y.
template<typename Temp , typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmpl, Temp
&tmp2)
Computes the rectilinear (or Manhattan) distance between x and y.
template<typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

142

CONTENTS

Computes the euclidean distance between x and y.
template<typename Temp , typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.
template <typename Temp , typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmpl, Temp
&tmp2)

Computes the euclidean distance between x and y.
template<typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the Lo distance between x and y.
template <typename Temp , typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, Rounding_Dir dir)

Computes the L distance between x and y.
template<typename Temp , typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the L, distance between x and y.
template<typename Temp , typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir, Temp &tmp0, Temp &tmpl,
Temp &tmp2)
template<typename Temp , typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)
template<typename To , typename ITV >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)
template<typename Temp , typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir, Temp &tmp0, Temp &tmpl,
Temp &tmp2)
template <typename Temp , typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)
template<typename To , typename ITV >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Box< ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)
template <typename Temp , typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, const Rounding_Dir dir, Temp &tmp0, Temp &tmpl, Temp
&tmp2)
template<typename Temp , typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)
template<typename To , typename ITV >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const Box<
ITV > &x, const Box< ITV > &y, const Rounding_Dir dir)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 143

¢ template<typename ITV >
void swap (Box< ITV > &x, Box< ITV > &y)
* template<typename ITV >
std::ostream & operator<< (std::ostream &s, const Box< ITV > &box)

10.8.1 Detailed Description
template<typename ITV>class Parma_Polyhedra_Library::Box< ITV >

A not necessarily closed, iso-oriented hyperrectangle.

A Box object represents the smash product of n not necessarily closed and possibly unbounded intervals
represented by objects of class ITV, where n is the space dimension of the box.

An interval constraint (resp., interval congruence) is a syntactic constraint (resp., congruence) that only
mentions a single space dimension.

The Box domain optimally supports:
* tautological and inconsistent constraints and congruences;
* the interval constraints that are optimally supported by the template argument class ITV;

* the interval congruences that are optimally supported by the template argument class ITV.

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

The user interface for the Box domain is meant to be as similar as possible to the one developed for the
polyhedron class C_Polyhedron.

10.8.2 Constructor & Destructor Documentation

10.8.2.1 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (dimension_type
num_dimensions = 0, Degenerate_Element kind =UNIVERSE) [inline], [explicit]

Builds a universe or empty box of the specified space dimension.

Parameters

num_- | The number of dimensions of the vector space enclosing the box;
dimensions

kind | Specifies whether the universe or the empty box has to be built.

10.8.2.2 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Box< ITV >
& y, Complexity_Class complexity =ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.8.2.3 template<typename ITV > template<typename Other_ITV > Parma_Polyhedra_Library-
::Box< ITV >::Box (const Box< Other ITV > & y, Complexity_Class complexity =
ANY_COMPLEXITY) [inline], [explicit]

Builds a conservative, upward approximation of y.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

144 CONTENTS

The complexity argument is ignored.

10.8.2.4 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & ¢s) [inline], [explicit]

Builds a box from the system of constraints cs.

The box inherits the space dimension of cs.

Parameters

cs | A system of constraints: constraints that are not interval constraints are ignored (even
though they may have contributed to the space dimension).

10.8.2.5 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & c¢s, Recycle_Input dummy) [inline]

Builds a box recycling a system of constraints cs.

The box inherits the space dimension of cs.

Parameters

cs | A system of constraints: constraints that are not interval constraints are ignored (even
though they may have contributed to the space dimension).

dummy | A dummy tag to syntactically differentiate this one from the other constructors.

10.8.2.6 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs) [explicit]

Builds a box from the system of generators gs.

Builds the smallest box containing the polyhedron defined by gs. The box inherits the space dimension of
gs.

Exceptions

‘ std::invalid_argument ‘ Thrown if the system of generators is not empty but has no points.

10.8.2.7 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs, Recycle_Input dummy) [inline]

Builds a box recycling the system of generators gs.

Builds the smallest box containing the polyhedron defined by gs. The box inherits the space dimension of
gs.

Parameters

gs | The generator system describing the polyhedron to be approximated.

dummy | A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument | Thrown if the system of generators is not empty but has no points.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 145

10.8.2.8 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs) [inline], [explicit]

Builds the smallest box containing the grid defined by a system of congruences cgs. The box inherits the
space dimension of cgs.

Parameters

cgs | A system of congruences: congruences that are not non-relational equality constraints
are ignored (though they may have contributed to the space dimension).

10.8.2.9 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs, Recycle_Input dummy) [inline]

Builds the smallest box containing the grid defined by a system of congruences cgs, recycling cgs. The
box inherits the space dimension of cgs.

Parameters

cgs | A system of congruences: congruences that are not non-relational equality constraints
are ignored (though they will contribute to the space dimension).

dummy | A dummy tag to syntactically differentiate this one from the other constructors.

10.8.2.10 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const BD_Shape< T > & bds, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the BDS bds.

Builds the smallest box containing bds using a polynomial algorithm. The complexity argument is

ignored.

10.8.2.11 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const Octagonal_Shape< T > & oct, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the octagonal shape oct.

Builds the smallest box containing oct using a polynomial algorithm. The complexity argument is

ignored.

10.8.2.12 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]
Builds a box containing the polyhedron ph.

Builds a box containing ph using algorithms whose complexity does not exceed the one specified by
complexity. If complexityis ANY_COMPLEXITY, then the built box is the smallest one containing

ph.

10.8.2.13 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Grid & gr,
Complexity_Class complexity =POLYNOMIAL_COMPLEXITY) [explicit]

Builds a box containing the grid gr.

Builds the smallest box containing gr using a polynomial algorithm. The complexity argument is
ignored.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

146 CONTENTS

10.8.2.14 template<typename ITV > template<typename D1 , typename D2 , typename R >
Parma_Polyhedra_Library::Box< ITV >::Box (const Partially_Reduced_Product< D1,
D2, R > & dp, Complexity_Class complexity =ANY_COMPLEXITY) [explicit]

Builds a box containing the partially reduced product dp.

Builds a box containing ph using algorithms whose complexity does not exceed the one specified by
complexity.

10.8.3 Member Function Documentation

10.8.3.1 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::constrains (
Variable var) const

Returns t rue if and only if var is constrained in *this.

Exceptions

‘ std::invalid_argument ‘ Thrown if var is not a space dimension of *this.

10.8.3.2 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Constraint & ¢) const

Returns the relations holding between *this and the constraint c.

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and constraint c are dimension-incompatible.

10.8.3.3 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>:irelation_with (const Congruence & cg) const

Returns the relations holding between *xthis and the congruence cg.

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and constraint cg are dimension-incompatible.

10.8.3.4 template<typename ITV > Poly_Gen_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Generator & g) const

Returns the relations holding between *this and the generator g.

Exceptions

\ std::invalid_argument | Thrown if xthis and generator g are dimension-incompatible.

10.8.3.5 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::bounds_from_above
(const Linear_Expression & expr Jconst [inline]

Returns t rue if and only if expr is bounded from above in *this.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 147

Exceptions

‘ std: :invalid_argument ‘ Thrown if expr and xthis are dimension-incompatible.

10.8.3.6 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::bounds_from_below
(const Linear_Expression & expr)const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions

| std::invalid_argument | Thrown if expr and xthis are dimension-incompatible.

10.8.3.7 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const
[inline]

Returns true if and only if *this is not empty and expr is bounded from above in *xthis, in which
case the supremum value is computed.

Parameters

expr | The linear expression to be maximized subject to xthis;

sup_n | The numerator of the supremum value;

sup_d | The denominator of the supremum value;

maximum | true if and only if the supremum is also the maximum value.

Exceptions

\ std::invalid_argument \ Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.8.3.8 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum,
Generator & g Jconst [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters

expr | The linear expression to be maximized subject to *this;

sup_n | The numerator of the supremum value;

sup_d | The denominator of the supremum value;

maximum | true if and only if the supremum is also the maximum value;

g | When maximization succeeds, will be assigned the point or closure point where expr
reaches its supremum value.

Exceptions

\ std.:invalid_argument | Thrown if expr and *this are dimension-incompatible.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

148 CONTENTS

If *xthis is empty or expr is not bounded from above, false isreturned and sup_n, sup_d, maximum
and g are left untouched.

10.8.3.9 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const
[inline]

Returns true if and only if *this is not empty and expr is bounded from below in *xthis, in which
case the infimum value is computed.

Parameters

expr | The linear expression to be minimized subject to xthis;

inf_n | The numerator of the infimum value;

inf_d | The denominator of the infimum value;

minimum | true if and only if the infimum is also the minimum value.

Exceptions

\ std::invalid_argument | Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

10.8.3.10 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum,
Generator & g Jconst [inline]

Returns true if and only if *this is not empty and expr is bounded from below in *xthis, in which
case the infimum value and a point where expr reaches it are computed.

Parameters

expr | The linear expression to be minimized subject to xthis;

inf_n | The numerator of the infimum value;

inf_d | The denominator of the infimum value;

minimum | true if and only if the infimum is also the minimum value;

g | When minimization succeeds, will be assigned a point or closure point where expr
reaches its infimum value.

Exceptions

‘ std::invalid_argument | Thrown if expr and xthis are dimension-incompatible.

If xthis isempty or expr is not bounded from below, falseisreturnedand inf_n, inf_d,minimum
and g are left untouched.

10.8.3.11 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::frequency (const
Linear_Expression & expr, Coefficient & freq_n, Coefficient & freq_d, Coefficient & val_n,
Coefficient & val_d) const

Returns t rue if and only if there exist a unique value val such that *this saturates the equality expr
= val.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 149

Parameters

expr | The linear expression for which the frequency is needed;

freq_n | If true is returned, the value is set to 0; Present for interface compatibility with class
Grid, where the frequency can have a non-zero value;

freq_d | If true is returned, the value is set to 1;

val_n | The numerator of val;

val_d | The denominator of val;

Exceptions

‘ std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If false isreturned, then freq n, freq d, val_n and val_d are left untouched.

10.8.3.12 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::contains (const
Box< ITV > & y) const

Returns t rue if and only if *this contains y.

Exceptions

| std::invalid_argument | Thrown if x and y are dimension-incompatible.

10.8.3.13 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::strictly_contains (
const Box<ITV > &y)const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions

\ std::invalid_argument | Thrown if x and y are dimension-incompatible.

10.8.3.14 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::is_disjoint_from (
const Box< ITV > & y) const

Returns t rue if and only if *this and y are disjoint.

Exceptions

‘ std::invalid_argument ‘ Thrown if x and y are dimension-incompatible.

10.8.3.15 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::add_constraint (
const Constraint & ¢) [inline]

Adds a copy of constraint ¢ to the system of constraints defining *this.

Parameters

‘ c ‘ The constraint to be added.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

150

CONTENTS

Exceptions

std: :invalid_argument

Thrown if *this and constraint ¢ are dimension-incompatible, or c is not opti-
mally supported by the Box domain.

10.8.3.16 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::add_constraints (
const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints defining *this.

Parameters

‘ cs | The constraints to be added.

Exceptions

std::invalid_argument

Thrown if *this and cs are dimension-incompatible, or cs contains a constraint
which is not optimally supported by the box domain.

10.8.3.17 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_constraints (Constraint_System & c¢s) [inline]

Adds the constraints in cs to the system of constraints defining xthis.

Parameters

‘ cs | The constraints to be added. They may be recycled.

Exceptions

std: :invalid_argument

Thrown if *this and cs are dimension-incompatible, or cs contains a constraint
which is not optimally supported by the box domain.

Warning

The only assumption that can be made on cs upon successful or exceptional return is that it can be

safely destroyed.

10.8.3.18 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::add_congruence (
const Congruence & ¢g) [inline]

Adds to xthis a constraint equivalent to the congruence cg.

Parameters

‘ cg ‘ The congruence to be added.

Exceptions

std: :invalid_argument

Thrown if *this and congruence cg are dimension-incompatible, or cg is not
optimally supported by the box domain.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 151

10.8.3.19 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::add_congruences (
const Congruence_System & cgs) [inline]

Adds to *this constraints equivalent to the congruences in cgs.

Parameters
‘ cgs | The congruences to be added.

Exceptions

std::invalid_argument | Thrown if xthis and cgs are dimension-incompatible, or cgs contains a con-
gruence which is not optimally supported by the box domain.

10.8.3.20 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_congruences (Congruence_System & ¢gs) [inline]

Adds to xthis constraints equivalent to the congruences in cgs.

Parameters

cgs | The congruence system to be added to *this. The congruences in cgs may be recy-
cled.

Exceptions

std::invalid_argument | Thrown if xthis and cgs are dimension-incompatible, or cgs contains a con-
gruence which is not optimally supported by the box domain.

Warning

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

10.8.3.21 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraint (const Constraint& ¢) [inline]

Use the constraint c to refine xthis.

Parameters
‘ ¢ | The constraint to be used for refinement.

Exceptions

std::invalid_argument \ Thrown if *this and ¢ are dimension-incompatible.

10.8.3.22 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraints (const Constraint_System & ¢s) [inline]

Use the constraints in cs to refine *this.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

152 CONTENTS

Parameters

cs | The constraints to be used for refinement. To avoid termination problems, each con-
straint in cs will be used for a single refinement step.

Exceptions

‘ std::invalid_argument | Thrown if xthis and cs are dimension-incompatible.

Note

The user is warned that the accuracy of this refinement operator depends on the order of evaluation of
the constraints in cs, which is in general unpredictable. If a fine control on such an order is needed, the
user should consider calling the method refine_with_constraint (const Constraintég
c) inside an appropriate looping construct.

10.8.3.23 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruence (const Congruence &c¢g) [inline]

Use the congruence cg to refine xthis.

Parameters

‘ cg | The congruence to be used for refinement.

Exceptions

‘ std::invalid_argument ‘ Thrown if xthis and cg are dimension-incompatible.

10.8.3.24 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruences (const Congruence_System & ¢gs) [inline]

Use the congruences in cgs to refine *this.

Parameters

‘ cgs | The congruences to be used for refinement.

Exceptions

| std.::invalid_argument | Thrown if *this and cgs are dimension-incompatible.

10.8.3.25 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraint (const Constraint&c¢) [inline]

Use the constraint ¢ for constraint propagation on *this.

Parameters

‘ ¢ | The constraint to be used for constraint propagation.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 153

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and c are dimension-incompatible.

10.8.3.26 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraints (const Constraint_System & ¢s, dimension_type max_iterations =
0) [inline]

Use the constraints in cs for constraint propagation on xthis.

Parameters

cs | The constraints to be used for constraint propagation.

max_iterations | The maximum number of propagation steps for each constraint in cs. If zero (the
default), the number of propagation steps will be unbounded, possibly resulting in an
infinite loop.

Exceptions

\ std::invalid_argument A Thrown if *this and cs are dimension-incompatible.

Warning

This method may lead to non-termination if max_iterationsisO.

10.8.3.27 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain (
Variablevar) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
*this.

Parameters

‘ var | The space dimension that will be unconstrained.

Exceptions

‘ std::invalid_argument ‘ Thrown if var is not a space dimension of *this.

10.8.3.28 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain (
const Variables_Set & vars)

Computes the cylindrification of *this with respect to the set of space dimensions vars, assigning the
result to xthis.

Parameters

‘ vars | The set of space dimension that will be unconstrained.

Exceptions

tained in vars.

std::invalid_argument | Thrown if xt his is dimension-incompatible with one of the Variable objects con-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

154 CONTENTS

10.8.3.29 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::intersection_assign
(const Box< ITV > &y)

Assigns to xthis the intersection of *this and y.

Exceptions

| std::invalid_argument | Thrown if *this and y are dimension-incompatible.

10.8.3.30 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign (const Box< ITV > & y)

Assigns to *this the smallest box containing the union of xthis and y.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.8.3.31 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign_if_exact (const Box< ITV> &y) [inline]

If the upper bound of *this and y is exact, it is assigned to *this and true is returned, otherwise
false is returned.

Exceptions

| std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.8.3.32 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::difference_assign (
const Box< ITV> &y)

Assigns to xthis the difference of *this and y.

Exceptions

\ std::invalid_argument | Thrown if xthis and y are dimension-incompatible.

10.8.3.33 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::simplify_using_context_assign (const Box< ITV > &y)

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions

‘ std::invalid_argument | Thrown if *this and y are dimension-incompatible.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 155

10.8.3.34 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::affine_image (
Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference denominator
= Coefficient_one ())

Assigns to xthis the affine image of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var | The variable to which the affine expression is assigned;

expr | The numerator of the affine expression;

denominator | The denominator of the affine expression (optional argument with default value 1).

Exceptions

incompatible or if var is not a space dimension of *this.

std::invalid_argument | Thrown if denominator is zero or if expr and xthis are dimension-

10.8.3.35 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::affine_form_image (
Variable var, const Linear_Form< ITV > & If)

Assigns to xthis the affine form image of *this under the function mapping variable var into the affine
expression(s) specified by 1f.

Parameters
var | The variable to which the affine expression is assigned.
If | The linear form on intervals with floating point boundaries that defines the affine ex-
pression(s). ALL of its coefficients MUST be bounded.
Exceptions

of xthis.

std::invalid_argument | Thrown if 1 f and xthis are dimension-incompatible or if var is not a dimension

This function is used in abstract interpretation to model an assignment of a value that is correctly overap-
proximated by 1f£ to the floating point variable represented by var.

10.8.3.36 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::affine_preimage (
Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference denominator
= Coefficient_one ())

Assigns to *this the affine preimage of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters

var | The variable to which the affine expression is substituted;

expr | The numerator of the affine expression;

denominator | The denominator of the affine expression (optional argument with default value 1).

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

156

CONTENTS

Exceptions

std::invalid_argument | Thrown if denominator is zero or if expr and xthis are dimension-

incompatible or if var is not a space dimension of *this.

10.8.3.37 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to #this the image of *this with respect to the generalized affine relation var’ >q 5

expr
ominator’

where i< is the relation symbol encoded by relsym.

Parameters

var

The left hand side variable of the generalized affine relation;

relsym

The relation symbol;

expr

The numerator of the right hand side affine expression;

denominator

The denominator of the right hand side affine expression (optional argument with de-
fault value 1).

Exceptions

std::invalid_argument | Thrown if denominator is zero or if expr and *this are dimension-

incompatible or if var is not a space dimension of *this.

10.8.3.38 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to ¥t his the preimage of ¥t his with respect to the generalized affine relation var’ b 4—

expr
ominator’

where i< is the relation symbol encoded by relsym.

Parameters

var

The left hand side variable of the generalized affine relation;

relsym

The relation symbol;

expr

The numerator of the right hand side affine expression;

denominator

The denominator of the right hand side affine expression (optional argument with de-
fault value 1).

Exceptions

std::invalid_argument | Thrown if denominator is zero or if expr and xthis are dimension-

incompatible or if var is not a space dimension of *this.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 157

10.8.3.39 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (const Linear_Expression & /hs, Relation_Symbol relsym,
const Linear_Expression & rhs)

Assigns to ¥t his the image of ¥this with respect to the generalized affine relation 1hs’ i rhs, where
is the relation symbol encoded by relsym.

Parameters

lhs | The left hand side affine expression;

relsym | The relation symbol;

rhs | The right hand side affine expression.

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis is dimension-incompatible with 1hs or rhs.

10.8.3.40 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (const Linear_Expression & lhs, Relation_Symbol relsym,
const Linear_Expression & rhs)

Assigns to *this the preimage of ¥t his with respect to the generalized affine relation lhs’ t< rhs, where
< is the relation symbol encoded by relsym.

Parameters

lhs | The left hand side affine expression;

relsym | The relation symbol;

rhs | The right hand side affine expression.

Exceptions

‘ std::invalid_argument ‘ Thrown if xthis is dimension-incompatible with 1hs or rhs.

10.8.3.41 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_image (Variable var, const Linear Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to *this the image of xthis with respect to the bounded affine relation % < var’ <

ub_expr
denominator *

Parameters

var | The variable updated by the affine relation;

Ib_expr | The numerator of the lower bounding affine expression;

ub_expr | The numerator of the upper bounding affine expression;

denominator | The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

158

CONTENTS

Exceptions

std: :invalid_argument

are dimension-incompatible or if var is not a space dimension of xthis.

10.8.3.42 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_preimage (Variable var, const Linear_Expression & Ib_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one ())

Assigns to xthis the preimage of xt his with respect to the bounded affine relation

ub_expr
denominator *

Parameters

5 lbfe?cpr S va,r' S
enominator

var

The variable updated by the affine relation;

Ib_expr

The numerator of the lower bounding affine expression;

ub_expr

The numerator of the upper bounding affine expression;

denominator

The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions

std: :invalid_argument

are dimension-incompatible or if var is not a space dimension of xthis.

10.8.3.43 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::time_elapse_assign
(const Box< ITV > &y)

Assigns to xthis the result of computing the time-elapse between sthis and y.

Exceptions

‘ std::invalid_argument ‘ Thrown if *this and y are dimension-incompatible.

10.8.3.44 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::wrap_assign (const Variables_Set & vars, Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r, Bounded_Integer_Type_Overflow o, const
Constraint_System x ¢s_p = 0, unsigned complexity_threshold = 1 6, bool wrap_individually =

true)

Wraps the specified dimensions of the vector space.

Parameters

vars

The set of Variable objects corresponding to the space dimensions to be wrapped.

The width of the bounded integer type corresponding to all the dimensions to be
wrapped.

The representation of the bounded integer type corresponding to all the dimensions to
be wrapped.

The overflow behavior of the bounded integer type corresponding to all the dimensions
to be wrapped.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and *this

Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and xthis

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 159

cs_p | Possibly null pointer to a constraint system. When non-null, the pointed-to constraint
system is assumed to represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the computation of upper
bounds and due to non-distributivity of constraint refinement over upper bounds, pass-
ing a constraint system in this way can be more precise than refining the result of the
wrapping operation with the constraints in xcs_p.
complexity_- | A precision parameter which is ignored for the Box domain.
threshold
wrap_- | A precision parameter which is ignored for the Box domain.
individually

Exceptions

std::invalid_argument | Thrown if xthis is dimension-incompatible with one of the Variable objects con-
tained in vars or with xcs_p.

10.8.3.45 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::drop_some_non_integer_points (Complexity Class complexity = ANY_COMPLEXITY)

Possibly tightens xthis by dropping some points with non-integer coordinates.

Parameters
‘ complexity ‘ The maximal complexity of any algorithms used.

Note

Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.

10.8.3.46 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::drop_some_non_integer_points (const Variables_Set & vars, Complexity_Class
complexity = ANY_COMPLEXITY)

Possibly tightens *this by dropping some points with non-integer coordinates for the space dimensions
corresponding to vars.

Parameters

vars | Points with non-integer coordinates for these variables/space-dimensions can be dis-
carded.
complexity | The maximal complexity of any algorithms used.

Note
Currently there is no optimality guarantee, not even if complexity is ANY_COMPLEXITY.
10.8.3.47 template<typename ITV > template<typename T > Enable_lf< Is_Same< T, Box<
ITV > >::value &&ls_Same_Or_Derived< Interval Base, ITV >::value, void >::type

Parma_Polyhedra_Library::Box< ITV >::CC76_widening_assign (const T & y, unsigned x ip
=0)

Assigns to xthis the result of computing the CC76-widening between *this and y.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

160 CONTENTS

Parameters
y | A box that must be contained in xthis.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

‘ std: :invalid_argument ‘ Thrown if *this and y are dimension-incompatible.

10.8.3.48 template<typename ITV > template<typename T, typename lterator > Enable_If< Is_Same<
T, Box< ITV > >::value &&Is_Same_Or_Derived< Interval_Base, ITV >::value, void >::type
Parma_Polyhedra_Library::Box< ITV >::CC76_widening_assign (const T & y, Iterator first,
lterator last)

Assigns to xthis the result of computing the CC76-widening between *this and y.

Parameters

y | A box that must be contained in xthis.

first | An iterator that points to the first stop-point.

last | An iterator that points one past the last stop-point.

Exceptions

‘ std::invalid_argument ‘ Thrown if *this and y are dimension-incompatible.

10.8.3.49 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::limited_CC76 _extrapolation_assign (const Box< ITV > & y, const Constraint_System & cs,
unsigned x tp =0)

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.

Parameters
y | A box that must be contained in xthis.
cs | The system of constraints used to improve the widened box.
tp | An optional pointer to an unsigned variable storing the number of available tokens (to
be used when applying the widening with tokens delay technique).
Exceptions

inequality.

std::invalid_argument | Thrown if *this, y and cs are dimension-incompatible or if cs contains a strict

10.8.3.50 template<typename ITV > template<typename T > Enable_If< Is_Same< T, Box<
ITV > >::value &&Is_Same_Or_Derived< Interval_Base, ITV >::value, void >::type
Parma_Polyhedra_Library::Box< ITV >::CC76_narrowing_assign (constT& y)

Assigns to *this the result of restoring in y the constraints of *th1i s that were lost by CC76-extrapolation
applications.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 161

Parameters

‘ y ‘ A Box that must contain xthis.

Exceptions

\ std::invalid_argument | Thrown if *this and y are dimension-incompatible.

Note

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas *t his denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign (y) will assign to
x the result of the computation yAx.

10.8.3.51 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and_embed (dimension_typem) [inline]

Adds m new dimensions and embeds the old box into the new space.

Parameters

\ m | The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of interval constraints in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the box 5 C R2 and adding a third dimension, the result will be the box

{(x,y,z)T e R? | (z,y)T € B}.

10.8.3.52 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and _project (dimension_type m) [inline]

Adds m new dimensions to the box and does not embed it in the new vector space.

Parameters

‘ m | The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the box 5 C R? and adding a third dimension, the result
will be the box

{(2,9,0)" €R?| (z,y)" € B}.

10.8.3.53 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::concatenate_assign
(const Box< ITV > &y)

Seeing a box as a set of tuples (its points), assigns to *this all the tuples that can be obtained by concate-
nating, in the order given, a tuple of ¥t his with a tuple of y.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

162 CONTENTS

Let B C R" and D C R™ be the boxes corresponding, on entry, to *this and y, respectively. Upon
successful completion, *t his will represent the box R C R™*" such that

def
R é {(xla"'axnayla"'aym)T (x17"'7xn)T eB?(yla'“aym)T GD}

Another way of seeing it is as follows: first increases the space dimension of xthis by adding y .-
space_dimension () new dimensions; then adds to the system of constraints of *this a renamed-
apart version of the constraints of y.

10.8.3.54 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_space_dimensions (const Variables_Set & vars) [inline]

Removes all the specified dimensions.

Parameters

vars \ The set of Variable objects corresponding to the dimensions to be removed.

Exceptions

tained in vars.

std::invalid_argument A Thrown if xt his is dimension-incompatible with one of the Variable objects con-

10.8.3.55 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions

\ std: :invalid_argument | Thrown if new_dimension is greater than the space dimension of xthis.

10.8.3.56 template<typename ITV > template<typename Partial_Function > void
Parma_Polyhedra_Library::Box< ITV >::map_space_dimensions (const Partial_Function &
pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters

\ pfunc \ The partial function specifying the destiny of each dimension.

The template type parameter Partial_Function must provide the following methods.

bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

returns the maximum value that belongs to the co-domain of the partial function.

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 163

bool maps (dimension_type i, dimension_type& j
) const

Let f be the represented function and k be the value of i. If f is defined in &, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

10.8.3.57 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::expand_space_dimension (Variable var, dimension_typem) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters

var | The variable corresponding to the space dimension to be replicated;

m | The number of replicas to be created.

Exceptions

std::invalid_argument | Thrown if var does not correspond to a dimension of the vector space.

dimension max_space_dimension ().

std::length_error | Thrown if adding m new space dimensions would cause the vector space to exceed

If xthis has space dimension n, with n > 0, and var has space dimension & < n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, ..., n+m — 1.

10.8.3.58 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::fold_space_dimensions (const Variables_Set & vars, Variable dest)

Folds the space dimensions in vars into dest.

Parameters

vars | The set of Variable objects corresponding to the space dimensions to be folded;

dest | The variable corresponding to the space dimension that is the destination of the folding
operation.

Exceptions

able objects contained in vars. Also thrown if dest is contained in vars.

std::invalid_argument | Thrown if xthis is dimension-incompatible with dest or with one of the Vari-

If *this has space dimension n, with n > 0, dest has space dimension k& < n, vars is a set of variables
whose maximum space dimension is also less than or equal to n, and de st is not a member of vars, then
the space dimensions corresponding to variables in vars are folded into the k-th space dimension.

10.8.3.59 template<typename ITV > const ITV & Parma_Polyhedra_Library::Box< ITV >::get_interval
(Variable var)const [inline]

Returns a reference the interval that bounds var.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

164 CONTENTS

Exceptions

‘ std: :invalid_argument ‘ Thrown if var is not a space dimension of xthis.

10.8.3.60 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::set_interval (
Variable var, constITV&i) [inline]

Sets to i the interval that bounds var.

Exceptions

\ std. :invalid_argument Thrown if var is not a space dimension of *this.

10.8.3.61 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::has_lower_bound (
Variable var, Coefficient & n, Coefficient & d, bool & closed)const [inline]

If the space dimension of var is unbounded below, return false. Otherwise return t rue and set n, d
and closed accordingly.

Note

It is assumed that xthis is a non-empty box having space dimension greater than or equal to that of
var. An undefined behavior is obtained if this assumption is not met.

Let I be the interval corresponding to variable var in the non-empty box *this. If I is not bounded from
below, simply return false (leaving all other parameters unchanged). Otherwise, set n, d and closed
as follows:

* n and d are assigned the integers n and d such that the fraction n/d corresponds to the greatest lower
bound of I. The fraction n/d is in canonical form, meaning that n and d have no common factors, d
is positive, and if n is zero then d is one;

e closed is set to true if and only if the lower boundary of I is closed (i.e., it is included in the
interval).

10.8.3.62 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::has_upper_bound (
Variable var, Coefficient & n, Coefficient & d, bool & closed)const [inline]

If the space dimension of var is unbounded above, return false. Otherwise return true and set n, d
and closed accordingly.

Note

It is assumed that xthis is a non-empty box having space dimension greater than or equal to that of
var. An undefined behavior is obtained if this assumption is not met.

Let I be the interval corresponding to variable var in the non-empty box *this. If I is not bounded from
above, simply return false (leaving all other parameters unchanged). Otherwise, set n, d and closed
as follows:

* n and d are assigned the integers » and d such that the fraction n/d corresponds to the least upper
bound of I. The fraction n/d is in canonical form, meaning that n and d have no common factors, d
is positive, and if n is zero then d is one;

* closed is set to true if and only if the upper boundary of [is closed (i.e., it is included in the
interval).

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 165

10.8.3.63 template<typename ITV > int32_t Parma_Polyhedra_Library::Box< ITV >::hash_code ()
const [inline]
Returns a 32-bit hash code for xthis.

If x and y are such that x == y, then x.hash_code () == y.hash_code ().

10.8.4 Friends And Related Function Documentation

10.8.4.1 template<typename ITV > void swap (Box< ITV > & x, Box<ITV> &y) [related]
Swaps x with y.

10.8.4.2 template<typename ITV > bool operator== (const Box< ITV > & x, const Box<ITV > &y)
[related]

Returns t rue if and only if x and y are the same box.
Note that x and y may be dimension-incompatible boxes: in this case, the value false is returned.

10.8.4.3 template<typename ITV > bool operator!= (const Box< ITV > & x, const Box< ITV > & y)
[related]

Returns t rue if and only if x and y are not the same box.
Note that x and y may be dimension-incompatible boxes: in this case, the value t rue is returned.

10.8.4.4 template<typename ITV > std::ostream & operator<< (std::ostream & s, const Box< ITV > &
box) [related]

Output operator.

10.8.4.5 template<typename To , typename ITV > bool rectilinear_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box< ITV > &),
Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns f£alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.8.4.6 template<typename Temp , typename To , typename ITV > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box<
ITV> &y, Rounding Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns £alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

166 CONTENTS

10.8.4.7 template<typename Temp , typename To , typename ITV > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box<
ITV > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the rectilinear (or Manhattan) distance between x and y.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmp1l and tmp2.

10.8.4.8 template<typename To , typename ITV > bool euclidean_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box< ITV > & J,
Rounding_Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and v is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.8.4.9 template<typename Temp , typename To , typename ITV > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box<
ITV> &y, Rounding Dir dir) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.
All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-

Policy>.

10.8.4.10 template<typename Temp , typename To , typename ITV > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box<
ITV > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the euclidean distance between x and y.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns £alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmpl and tmp?2.

10.8.4.11 template<typename To , typename ITV > bool Linfinity_distance_assign (Checked_Number<
To, Extended _Number_Policy > & r, const Box< ITV > & x, const Box< ITV > & J,
Rounding_Dir dir) [related]

Computes the L, distance between x and y.

If the L, distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

(J

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.8 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 167

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_Policy>.

10.8.4.12 template<typename Temp , typename To , typename ITV > bool Linfinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box<
ITV > &), Rounding_Dir dir) [related]

Computes the L, distance between x and y.

If the L, distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

10.8.4.13 template<typename Temp , typename To , typename ITV > bool Linfinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box<
ITV > & y, Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2) [related]

Computes the L, distance between x and y.

If the L., distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1l and tmp2.

10.8.4.14 template<typename Temp , typename To , typename ITV > bool rectilinear_distance assign
(Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const
Box< ITV > & y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

10.8.4.15 template<typename Temp , typename To , typename ITV > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box<
ITV > &y, const Rounding_Dir dir) [related]

10.8.4.16 template<typename To , typename ITV > bool rectilinear_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box<
ITV > & y, const Rounding_Dir dir) [related]

10.8.4.17 template<typename Temp , typename To , typename ITV > bool euclidean_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const
Box< ITV > & y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

10.8.4.18 template<typename Temp , typename To , typename ITV > bool euclidean_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box<
ITV > &y, const Rounding_Dir dir) [related]

10.8.4.19 template<typename To, typename ITV > bool euclidean_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const Box< ITV > & X, const Box< ITV > & J, const
Rounding_Dir dir) [related]

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

168

CONTENTS

10.8.4.20

10.8.4.21

10.8.4.22

10.8.4.23

10.8.4.24

template<typename Temp , typename To , typename ITV > bool Linfinity_distance _assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const
Box< ITV > & y, const Rounding_Dir dir, Temp & tmp0, Temp & tmp1, Temp & tmp2)
[related]

template<typename Temp , typename To , typename ITV > bool Linfinity_distance_assign (
Checked_Number< To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box<
ITV > &y, const Rounding_Dir dir) [related]

template<typename To , typename ITV > bool Linfinity_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const Box< ITV > & x, const Box< ITV > & J, const
Rounding_Dir dir) [related]

template<typename ITV > void swap (Box< ITV > & x, Box<ITV > &y) [related]

template<typename ITV > std::ostream & operator< < (std::ostream & s, const Box< ITV > &
box) [related]

The documentation for this class was generated from the following file:

* ppl.hh

10.9 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::C_Polyhedron:

Parma_Polyhedra_Library
::Polyhedron

Parma_Polyhedra_Library
::C_Polyhedron

Public Member Functions

¢ C_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)

Builds either the universe or the empty C polyhedron.

* C_Polyhedron (const Constraint_System &cs)

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.9 Parma_Polyhedra_Library::C_Polyhedron Class Reference 169

Builds a C polyhedron from a system of constraints.

¢ C_Polyhedron (Constraint_System &cs, Recycle_Input dummy)

Builds a C polyhedron recycling a system of constraints.

e C_Polyhedron (const Generator_System &gs)
Builds a C polyhedron from a system of generators.

e C_Polyhedron (Generator_System &gs, Recycle_Input dummy)
Builds a C polyhedron recycling a system of generators.

e C_Polyhedron (const Congruence_System &cgs)
Builds a C polyhedron from a system of congruences.

e C_Polyhedron (Congruence_System &cgs, Recycle_Input dummy)

Builds a C polyhedron recycling a system of congruences.
* C_Polyhedron (const NNC_Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXIT-
Y)
Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

¢ template<typename Interval >
C_Polyhedron (const Box< Interval > &box, Complexity_Class complexity=ANY_COMPLEXIT-
Y)
Builds a C polyhedron out of a box.

¢ template<typename U >
C_Polyhedron (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_COMPLEXIT-
Y)
Builds a C polyhedron out of a BD shape.

¢ template<typename U >
C_Polyhedron (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_COMPL-
EXITY)

Builds a C polyhedron out of an octagonal shape.
e C_Polyhedron (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a C polyhedron out of a grid.
¢ C_Polyhedron (const C_Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXITY)
Ordinary copy constructor:
* C_Polyhedron & operator= (const C_Polyhedron &y)
The assignment operator. (xthis and y can be dimension-incompatible.)

* C_Polyhedron & operator= (const NNC_Polyhedron &y)
Assigns to xthis the topological closure of the NNC polyhedron y.
e ~C_Polyhedron ()
Destructor.
* bool poly_hull_assign_if_exact (const C_Polyhedron &y)

If the poly-hull of xthis and y is exact it is assigned to xthis and true is returned, otherwise false
is returned.

* bool upper_bound_assign_if_exact (const C_Polyhedron &y)

Same as poly_hull_assign_if_exact(y).

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

170 CONTENTS

Additional Inherited Members
10.9.1 Detailed Description

A closed convex polyhedron.

An object of the class C_Polyhedron represents a topologically closed convex polyhedron in the vector
space R".

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing a closure point.

Note

Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the class NNC_Polyhedron, the precise topological closure test
will be performed.

10.9.2 Constructor & Destructor Documentation

10.9.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_dimensions = 0,
Degenerate_Element Kind =UNIVERSE) [inline], [explicit]

Builds either the universe or the empty C polyhedron.

Parameters
num_- | The number of dimensions of the vector space enclosing the C polyhedron;
dimensions
kind | Specifies whether a universe or an empty C polyhedron should be built.

Exceptions

\ std::length_error \ Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a O-dimension space universe C polyhedron is built.

10.9.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System & ¢s)
[inline], [explicit]

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters
\ cs | The system of constraints defining the polyhedron.
z! The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.9 Parma_Polyhedra_Library::C_Polyhedron Class Reference 171

Exceptions

‘ std::invalid_argument ‘ Thrown if the system of constraints contains strict inequalities.

10.9.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_System & cs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters

cs | The system of constraints defining the polyhedron. It is not declared const because
its data-structures may be recycled to build the polyhedron.

dummy | A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

‘ std::invalid_argument ‘ Thrown if the system of constraints contains strict inequalities.

10.9.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System & gs)
[inline], [explicit]

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

‘ gs | The system of generators defining the polyhedron.

Exceptions

std::invalid_argument

Thrown if the system of generators is not empty but has no points, or if it contains
closure points.

10.9.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System & gs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters

gs | The system of generators defining the polyhedron. It is not declared const because
its data-structures may be recycled to build the polyhedron.

dummy | A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions

std::invalid_argument

Thrown if the system of generators is not empty but has no points, or if it contains
closure points.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

ﬁ

http://bugseng.com

172

CONTENTS

10.9.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Congruence_System & cgs)
[explicit]

Builds a C polyhedron from a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters

‘ cgs ‘ The system of congruences defining the polyhedron.

10.9.2.7 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Congruence_System & cgs,
Recycle_Input dummy)

Builds a C polyhedron recycling a system of congruences.

The polyhedron inherits the space dimension of the congruence system.

Parameters
cgs | The system of congruences defining the polyhedron. It is not declared const because
its data-structures may be recycled to build the polyhedron.
dummy | A dummy tag to syntactically differentiate this one from the other constructors.

10.9.2.8 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const NNC_Polyhedron & ¥,
Complexity_Class complexity =ANY_COMPLEXITY) [explicit]

Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

Parameters

Y

The NNC polyhedron to be used;

complexity

This argument is ignored.

10.9.2.9 template<typename Interval > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (
const Box< Interval > & box, Complexity_Class complexity = ANY_COMPLEXITY)
[inline], [explicit]

Builds a C polyhedron out of a box.

The polyhedron inherits the space dimension of the box and is the most precise that includes the box. The
algorithm used has polynomial complexity.

Parameters

box

The box representing the polyhedron to be approximated;

complexity

This argument is ignored.

Exceptions

std::length_error | Thrown if the space dimension of box exceeds the maximum allowed space di-

mension.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.9 Parma_Polyhedra_Library::C_Polyhedron Class Reference 173

10.9.2.10 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const
BD_Shape< U > & bd, Complexity_Class complexity = ANY_COMPLEXITY)

[inline], [explicit]

Builds a C polyhedron out of a BD shape.
The polyhedron inherits the space dimension of the BDS and is the most precise that includes the BDS.

Parameters

bd | The BDS used to build the polyhedron.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

10.9.2.11 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const
Octagonal_Shape< U > & 0s, Complexity_Class complexity = ANY_COMPLEXITY)
[inline], [explicit]

Builds a C polyhedron out of an octagonal shape.

The polyhedron inherits the space dimension of the octagonal shape and is the most precise that includes
the octagonal shape.

Parameters

os | The octagonal shape used to build the polyhedron.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

10.9.2.12 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Grid & grid, Complexity_Class
complexity = ANY_COMPLEXITY) [explicit]

Builds a C polyhedron out of a grid.

The polyhedron inherits the space dimension of the grid and is the most precise that includes the grid.

Parameters

grid | The grid used to build the polyhedron.

complexity | This argument is ignored as the algorithm used has polynomial complexity.

10.9.2.13 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const C_Polyhedron & y,
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy constructor.

The complexity argument is ignored.

10.9.3 Member Function Documentation

10.9.3.1 bool Parma_Polyhedra_Library::C_Polyhedron::poly_hull assign_if_exact (const C_Polyhedron &
y)

If the poly-hull of *this and y is exact it is assigned to *this and true is returned, otherwise false
is returned.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

174 CONTENTS

Exceptions

‘ std: :invalid_argument ‘ Thrown if xthis and y are dimension-incompatible.

The documentation for this class was generated from the following file:

* ppl.hh

10.10 Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval Type, FP-
_Format > Class Template Reference

A generic Cast Floating Point Expression.
#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type,
FP_Format >:

Parma_Polyhedra_Library

::Cast_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library
:Floating_Point_Expression < —
< FP_Interval_Type, FP_Format >

Public Types

* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear Form FP_Linear Form

Alias for the Linear_Form<FP_Interval_Type> from Floating_Point_Expression.
¢ typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store
Alias for the Box<FP_Interval_Type> from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_ Form_Abstract_Store FP_Linear Form_Abstract_Store

Alias for the std::map<dimension_type, FP_Linear_Form> from Floating_Point_Expression.
Public Member Functions

¢ bool linearize (const FP_Interval_Abstract_Store &int_store, const FP_Linear_Form_Abstract_Store
&lIf_store, FP_Linear_Form &result) const

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.10 Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 175

Linearizes the expression in a given astract store.
* void m_swap (Cast_Floating_Point_Expression &y)

Swaps xthis with y.

Constructors and Destructor

* Cast_Floating_Point_Expression (Floating_Point_Expression< FP_Interval_Type, FP_Format >
*CONSt expr)

Builds a cast floating point expression with the value expressed by expr.
* ~Cast_Floating_Point_Expression ()

Destructor.

Related Functions
(Note that these are not member functions.)

¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Cast_Floating-
_Point_Expression< FP_Interval_Type, FP_Format > &y)

Swaps x with y.
¢ template<typename FP_Interval_Type , typename FP_Format >

void swap (Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Cast_Floating-
_Point_Expression< FP_Interval_Type, FP_Format > &y)

Additional Inherited Members
10.10.1 Detailed Description

template<typename FP_Interval_Type, typename FP_Format>>class Parma_Polyhedra_Library::Cast_Floating-
_Point_Expression< FP_Interval_Type, FP_Format >

A generic Cast Floating Point Expression.

Template type parameters

* The class template type parameter FP_Interval_Type represents the type of the intervals used
in the abstract domain.

* The class template type parameter FP_Format represents the floating point format used in the
concrete domain.

Linearization of floating-point cast expressions

Leti+) oy d,vandi +3) i vbe two linear forms and M# a sound abstract operator on linear forms
such that:

(i +> m) B <z’/ +y m) = (io* i)+ (iv@¥ i)

veY veY veVY

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

176 CONTENTS

Given a floating point expression e and a composite abstract store Hp#, pﬂ], we construct the interval

linear form (cast(e)) |[p#, pﬂ] as follows:

(cast(e)) [, o | = te) [0, | 87 =1 (1e) [0, o]) 8% mfel-1.1]

where e¢ (1) is the linear form computed by calling method Floating_Point_FExpression::relative-
_error onland mfr is arounding error defined in Float ing_Point_Expression::absolute-
_error.

10.10.2 Member Function Documentation

10.10.2.1 template<typename FP_Interval_Type , typename FP_Format > bool Parma_Polyhedra_-
Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format >::linearize (
const FP_Interval_Abstract_Store & int_store, const FP_Linear_Form_Abstract_Store &
If store, FP_Linear_Form & result) const [virtual]

Linearizes the expression in a given astract store.

Makes result become the linearization of *this in the given composite abstract store.

Parameters
int_store | The interval abstract store.
If _store | The linear form abstract store.
result | The modified linear form.

Returns

t rue if the linearization succeeded, £alse otherwise.

See the class description for an explanation of how result is computed.

Implements Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >.

10.10.3 Friends And Related Function Documentation

10.10.3.1 template<typename FP_Interval_Type , typename FP_Format > void swap
(Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format > & x,
Cast_Floating_Point_Expression< FP_Interval Type, FP_Format > &y) [related]

Swaps x with y.

10.10.3.2 template<typename FP_Interval_Type , typename FP_Format > void swap
(Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format > & x,
Cast_Floating_Point_Expression< FP_Interval Type, FP_Format > &y) [related]

The documentation for this class was generated from the following file:

* ppl.hh

10.11 Parma_Polyhedra_Library::Cast_Operator Class Reference

A cast operator converting one concrete expression to some type.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.12 Parma_Polyhedra_Library::Cast_Operator_Common< Target > Class Template Referehée

#include <ppl.hh>

10.11.1 Detailed Description

A cast operator converting one concrete expression to some type.

The documentation for this class was generated from the following file:

* ppl.hh

10.12 Parma_Polyhedra_Library::Cast_ Operator Common< Target > Class Template Ref-
erence

Base class for cast operator concrete expressions.

#include <ppl.hh>

10.12.1 Detailed Description
template<typename Target>class Parma_Polyhedra_Library::Cast_Operator_Common< Target >

Base class for cast operator concrete expressions.

The documentation for this class was generated from the following file:

* ppl.hh

10.13 Parma_Polyhedra_Library::Checked Number< T, Policy > Class Template Refer-
ence

A wrapper for numeric types implementing a given policy.

#include <ppl.hh>

Public Member Functions

¢ bool OK () const

Checks if all the invariants are satisfied.
* Result classify (bool nan=true, bool inf=true, bool sign=true) const

Classifies xthis.

Constructors

¢ Checked_Number ()

Default constructor.

e Checked_Number (const Checked_Number &y)

Copy constructor.
* template<typename From , typename From_Policy >

Checked_Number (const Checked_Number< From, From_Policy > &y, Rounding_Dir dir)

Direct initialization from a Checked_Number and rounding mode.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

178

CONTENTS

Checked_Number (char y, Rounding_Dir dir)

Direct initialization from a plain char and rounding mode.
Checked_Number (signed char y, Rounding_Dir dir)

Direct initialization from a signed char and rounding mode.
Checked_Number (signed short y, Rounding_Dir dir)

Direct initialization from a signed short and rounding mode.
Checked_Number (signed int y, Rounding_Dir dir)

Direct initialization from a signed int and rounding mode.
Checked_Number (signed long y, Rounding_Dir dir)

Direct initialization from a signed long and rounding mode.
Checked_Number (signed long long y, Rounding_Dir dir)

Direct initialization from a signed long long and rounding mode.
Checked_Number (unsigned char y, Rounding_Dir dir)

Direct initialization from an unsigned char and rounding mode.
Checked_Number (unsigned short y, Rounding_Dir dir)

Direct initialization from an unsigned short and rounding mode.
Checked_Number (unsigned int y, Rounding_Dir dir)

Direct initialization from an unsigned int and rounding mode.
Checked_Number (unsigned long y, Rounding_Dir dir)

Direct initialization from an unsigned long and rounding mode.
Checked_Number (unsigned long long y, Rounding_Dir dir)

Direct initialization from an unsigned long long and rounding mode.

Checked_Number (float y, Rounding_Dir dir)

Direct initialization from a float and rounding mode.

Checked_Number (double y, Rounding_Dir dir)

Direct initialization from a double and rounding mode.
Checked_Number (long double y, Rounding_Dir dir)

Direct initialization from a long double and rounding mode.
Checked_Number (const mpq_class &y, Rounding_Dir dir)

Direct initialization from a rational and rounding mode.
Checked_Number (const mpz_class &y, Rounding_Dir dir)

Direct initialization from an unbounded integer and rounding mode.
Checked_Number (const char *y, Rounding_Dir dir)

Direct initialization from a C string and rounding mode.
template <typename From >
Checked_Number (const From &, Rounding_Dir dir, typename Enable_If< Is_Special< From
>::value, bool >::type ignored=false)

Direct initialization from special and rounding mode.
template <typename From , typename From_Policy >
Checked_Number (const Checked_Number< From, From_Policy > &y)

Direct initialization from a Checked_Number, default rounding mode.
Checked_Number (char y)

Direct initialization from a plain char, default rounding mode.
Checked_Number (signed char y)

Direct initialization from a signed char, default rounding mode.
Checked_Number (signed short y)

Direct initialization from a signed short, default rounding mode.
Checked_Number (signed int y)

Direct initialization from a signed int, default rounding mode.

Checked_Number (signed long y)

Direct initialization from a signed long, default rounding mode.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference

179

* Checked_Number (signed long long y)

Direct initialization from a signed long long, default rounding mode.
* Checked_Number (unsigned char y)

Direct initialization from an unsigned char, default rounding mode.
* Checked_Number (unsigned short y)

Direct initialization from an unsigned short, default rounding mode.
* Checked_Number (unsigned int y)

Direct initialization from an unsigned int, default rounding mode.
* Checked_Number (unsigned long y)

Direct initialization from an unsigned long, default rounding mode.
* Checked_Number (unsigned long long y)

Direct initialization from an unsigned long long, default rounding mode.
* Checked_Number (float y)

Direct initialization from a float, default rounding mode.

* Checked_Number (double y)

Direct initialization from a double, default rounding mode.
* Checked_Number (long double y)

Direct initialization from a long double, default rounding mode.
* Checked_Number (const mpq_class &y)

Direct initialization from a rational, default rounding mode.
* Checked_Number (const mpz_class &y)

Direct initialization from an unbounded integer, default rounding mode.
* Checked_Number (const char xy)

Direct initialization from a C string, default rounding mode.
¢ template<typename From >

Checked_Number (const From &, typename Enable_If< Is_Special< From >::value, bool >-

::type ignored=false)

Direct initialization from special, default rounding mode.

Accessors and Conversions

 operator T () const

Conversion operator: returns a copy of the underlying numeric value.
e T & raw_value ()

Returns a reference to the underlying numeric value.
e const T & raw_value () const

Returns a const reference to the underlying numeric value.

Assignment Operators

* Checked_Number & operator= (const Checked_Number &y)
Assignment operator.
¢ template<typename From >
Checked_Number & operator= (const From &y)
Assignment operator.
¢ template<typename From_Policy >
Checked_Number & operator+= (const Checked_Number< T, From_Policy > &y)
Add and assign operator.
* Checked_Number & operator+= (const T &y)

Add and assign operator.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

180

CONTENTS

template <typename From >

Enable_If

< Is_Native_Or_Checked< From >

:value, Checked_Number< T,

Policy > & >::type operator+= (const From &y)
Add and assign operator.

template <typename From_Policy >

Checked_Number & operator-= (const Checked_Number< T, From_Policy > &y)
Subtract and assign operator.

Checked_Number & operator-= (const T &y)
Subtract and assign operator.

template <typename From >

Enable_If

< Is_Native_Or_Checked< From >

:value, Checked_Number< T,

Policy > & >::type operator-= (const From &y)
Subtract and assign operator.

template <typename From_Policy >

Checked_Number & operatorx= (const Checked_Number< T, From_Policy > &y)
Multiply and assign operator.

Checked_Number & operator+= (const T &y)
Multiply and assign operator.

template <typename From >

Enable_If

< Is_Native_Or_Checked< From >

::value, Checked_Number< T,

Policy > & >::type operator+= (const From &y)
Multiply and assign operator.

template <typename From_Policy >

Checked_Number & operator/= (const Checked_Number< T, From_Policy > &y)
Divide and assign operator.

Checked_Number & operator/= (const T &y)
Divide and assign operator.

template <typename From >

Enable_If

< Is_Native_Or_Checked< From >

:value, Checked_Number< T,

Policy > & >::type operator/= (const From &y)
Divide and assign operator.

template <typename From_Policy >

Checked_Number & operator%= (const Checked_Number< T, From_Policy > &y)
Compute remainder and assign operator.

Checked_Number & operator%= (const T &y)
Compute remainder and assign operator.

template <typename From >

Enable_If

< Is_Native_Or_Checked< From >

::value, Checked_Number< T,

Policy > & >::type operator%= (const From &y)

Compute remainder and assign operator.

Increment and Decrement Operators

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 181

* Checked_Number & operator++ ()

Pre-increment operator.
* Checked_Number operator++ (int)

Post-increment operator.

* Checked_Number & operator-- ()

Pre-decrement operator.
* Checked_Number operator-- (int)

Post-decrement operator.

Related Functions

(Note that these are not member functions.)

* template<typename T >

Enable_If

< Is_Native_Or_Checked< T >

::value, bool >::type is_not_a_number (const T &x)
* template<typename T >

Enable_If

< Is_Native_Or_Checked< T >

::value, bool >::type is_minus_infinity (const T &x)
¢ template<typename T >

Enable_If

< Is_Native_Or_Checked< T >

::value, bool >::type is_plus_infinity (const T &x)
* template<typename T >

Enable_If

< Is_Native_Or_Checked< T >

::value, int >::type infinity_sign (const T &x)
¢ template<typename T >

Enable_If

< Is_Native_Or_Checked< T >

::value, bool >::type is_integer (const T &x)
¢ template<typename To , typename From >

Enable_If

< Is_Native_Or_Checked< To >

:value &&lIs_Special< From >

::value, Result >::type construct (To &to, const From &x, Rounding_Dir dir)
¢ template<typename To , typename From >

Enable_If

< Is_Native_Or_Checked< To >

::value &&Is_Special< From >

::value, Result >::type assign_r (To &to, const From &x, Rounding_Dir dir)
* template<typename To >

Enable If

< Is_Native_Or_Checked< To >

::value, Result >::type assign_r (To &to, const char *x, Rounding_Dir dir)
¢ template<typename To , typename To_Policy >

Enable_If

< Is_Native_Or_Checked< To >

::value, Result >::type assign_r (To &to, char *x, Rounding_Dir dir)

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

182

CONTENTS

template<typename T , typename Policy >
void swap (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &y)

Swaps x with y.
template<typename T , typename Policy >
const T & raw_value (const Checked_Number< T, Policy > &x)
template<typename T , typename Policy >
T & raw_value (Checked_Number< T, Policy > &x)
template<typename T , typename Policy >
memory_size_type total_memory_in_bytes (const Checked_Number< T, Policy > &x)
template<typename T , typename Policy >
memory_size_type external_memory_in_bytes (const Checked_Number< T, Policy > &x)
template<typename To >
Enable_If
< Is_Native_Or_Checked< To >
::value, Result >::type assign_r (To &to, const char *x, Rounding_Dir dir)
template<typename T , typename Policy >
Checked_Number< T, Policy > operator+ (const Checked_Number< T, Policy > &x)
template<typename T , typename Policy >
Checked_Number< T, Policy > operator- (const Checked_Number< T, Policy > &x)
template <typename From >
Enable_If
< Is_Native_Or_Checked< From >
::value, int >::type sgn (const From &x)
template<typename Froml , typename From2 >
Enable_If
< Is_Native_Or_Checked< From1 >
::value &&Is_Native_Or_Checked
< From?2 >::value, int >::type cmp (const From1 &x, const From2 &y)
template<typename T >
Enable If
< Is_Native_Or_Checked< T >
::value, Result >::type output (std::ostream &os, const T &X, const Numeric_Format &format,
Rounding_Dir dir)
template<typename T , typename Policy >
std::ostream & operator< < (std::ostream &os, const Checked_Number< T, Policy > &x)
template<typename T >
Enable If
< Is_Native_Or_Checked< T >
::value, Result >::type input (T &x, std::istream &is, Rounding_Dir dir)
template<typename T , typename Policy >
std::istream & operator>> (std::istream &is, Checked_Number< T, Policy > &x)
template<typename T , typename Policy >
void swap (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &y)

Memory Size Inspection Functions

¢ template<typename T , typename Policy >
memory_size_type total_memory_in_bytes (const Checked_Number< T, Policy > &x)
Returns the total size in bytes of the memory occupied by x.
¢ template<typename T , typename Policy >
memory_size_type external_memory_in_bytes (const Checked_Number< T, Policy > &x)

Returns the size in bytes of the memory managed by x.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 183

Arithmetic Operators

¢ template<typename T, typename Policy >
Checked_Number< T, Policy > operator+ (const Checked_Number< T, Policy > &x)
Unary plus operator.
¢ template<typename T, typename Policy >
Checked_Number< T, Policy > operator- (const Checked_Number< T, Policy > &x)
Unary minus operator.
¢ template<typename T , typename Policy >
void floor_assign (Checked_Number< T, Policy > &x)
Assigns to x largest integral value not greater than x.
¢ template<typename T , typename Policy >
void floor_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)
Assigns to x largest integral value not greater than y.
¢ template<typename T , typename Policy >
void ceil_assign (Checked_Number< T, Policy > &x)
Assigns to x smallest integral value not less than x.
¢ template<typename T , typename Policy >
void ceil_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)
Assigns to x smallest integral value not less than y.
¢ template<typename T , typename Policy >
void trunc_assign (Checked_Number< T, Policy > &x)
Round x to the nearest integer not larger in absolute value.
¢ template<typename T , typename Policy >
void trunc_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)
Assigns to x the value of y rounded to the nearest integer not larger in absolute value.
¢ template<typename T, typename Policy >
void neg_assign (Checked_Number< T, Policy > &x)
Assigns to x its negation.
* template<typename T , typename Policy >
void neg_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)
Assigns to x the negation of y.
* template<typename T , typename Policy >
void abs_assign (Checked_Number< T, Policy > &x)
Assigns to x its absolute value.
¢ template<typename T , typename Policy >
void abs_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)
Assigns to x the absolute value of y.
¢ template<typename T , typename Policy >
void add_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)
Assigns to x the value x + y * z.
¢ template<typename T , typename Policy >
void sub_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)
Assigns to x the value x — y x z.
* template<typename T , typename Policy >
void gecd_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

184

CONTENTS

Assigns to x the greatest common divisor of y and z.
template <typename T , typename Policy >
void gcdext_assign (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &s,
Checked_Number< T, Policy > &t, const Checked_Number< T, Policy > &y, const Checked_-
Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z, setting s and t such that sxy + txz = x = gcd(y, z).
template<typename T , typename Policy >
void lem_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the least common multiple of y and z.
template<typename T , typename Policy >
void mul_2exp_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, unsigned int exp)

Assigns to x the value y - 2°*®.
template<typename T , typename Policy >
void div_2exp_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, unsigned int exp)

Assigns to x the value y/2°*®.
template <typename T , typename Policy >
void exact_div_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

If z divides y, assigns to x the quotient of the integer division of y and z.
template<typename T , typename Policy >
void sqrt_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the integer square root of y.

Relational Operators and Comparison Functions

* template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

::value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator== (const T1 &x, const T2 &y)

Equality operator.
template <typename T1 , typename T2 >

Enable_If
< Is_Native_Or_Checked< T1 >
:value &&Is_Native_Or_Checked

< T2 >::value, bool >::type equal (const T1 &x, const T2 &y)
template <typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

::value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator!= (const T1 &x, const T2 &y)

Disequality operator.
template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

::value &&Is_Native_Or_Checked

< T2 >::value, bool >::type not_equal (const T1 &x, const T2 &y)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 185

template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator>= (const T1 &x, const T2 &y)

Greater than or equal to operator.
template <typename T1 , typename T2 >

Enable_If
< Is_Native_Or_Checked< T1 >
:value &&Is_Native_Or_Checked

< T2 >::value, bool >::type greater_or_equal (const T1 &x, const T2 &y)
template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator> (const T1 &x, const T2 &y)

Greater than operator.
template<typename T1 , typename T2 >

Enable_If
< Is_Native_Or_Checked< T1 >
:value &&Is_Native_Or_Checked

< T2 >::value, bool >::type greater_than (const T1 &x, const T2 &y)
template<typename T1 , typename T2 >

Enable If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator<= (const T1 &x, const T2 &y)

Less than or equal to operator.
* template<typename T1 , typename T2 >

Enable If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value, bool >::type less_or_equal (const T1 &x, const T2 &y)
* template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value &&(Is_Checked

< T1 >::value||Is_Checked< T2 >

::value), bool >::type operator< (const T1 &x, const T2 &y)

Less than operator.

* template<typename T1 , typename T2 >

Enable_If

< Is_Native_Or_Checked< T1 >

:value &&Is_Native_Or_Checked

< T2 >::value, bool >::type less_than (const T1 &x, const T2 &y)
¢ template<typename From >

Enable_If
< Is_Native_Or_Checked< From >

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

186 CONTENTS

::value, int >::type sgn (const From &x)

Returns —1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.
¢ template<typename Froml , typename From2 >
Enable_If
< Is_Native_Or_Checked< Froml >
::value &&Is_Native_Or_Checked
< From2 >::value, int >::type cmp (const From1 &x, const From2 &y)

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
v, respectively.

Input-Output Operators

* template<typename T >
Enable_If
< Is_Native_Or_Checked< T >
::value, Result >::type output (std::ostream &os, const T &x, const Numeric_Format &format,
Rounding_Dir dir)
¢ template<typename T , typename Policy >
std::ostream & operator<< (std::ostream &os, const Checked_Number< T, Policy > &x)
Output operator.
* template<typename T >

Enable_If
< Is_Native_Or_Checked< T >
::value, void >::type ascii_dump (std::ostream &s, const T &t)
Ascii dump for native or checked.
¢ template<typename T >

Enable_If
< Is_Native_Or_Checked< T >
::value, Result >::type input (T &x, std::istream &is, Rounding_Dir dir)
Input function.
¢ template<typename T , typename Policy >
std::istream & operator>> (std::istream &is, Checked_Number< T, Policy > &x)

Input operator.
* template<typename T >
Enable_If
< Is_Native_Or_Checked< T >
::value, bool >::type ascii_load (std::ostream &s, T &t)

Ascii load for native or checked.

10.13.1 Detailed Description
template <typename T, typename Policy>>class Parma_Polyhedra_Library::Checked Number< T, Policy >

A wrapper for numeric types implementing a given policy.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style. This class also implements the policy encoded by the
second template parameter. The default policy is to perform the detection of overflow errors.

10.13.2 Member Function Documentation

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 187

10.13.2.1 template<typename T, typename Policy > Result Parma_Polyhedra_Library::Checked_-
Number< T, Policy >::classify (bool nan = t rue, bool inf=t rue, bool sign =t rue) const
[inline]

Classifies xthis.

Returns the appropriate Result characterizing:

¢ whether xthis is NaN, if nan is true;
* whether *this is a (positive or negative) infinity, if inf is true;

e the sign of xthis, if signis true.

10.13.3 Friends And Related Function Documentation

10.13.3.1 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_not_a_number (constT&x) [related]

10.13.3.2 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_minus_infinity (constT& x) [related]

10.13.3.3 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_plus_infinity (const T& x) [related]

10.13.3.4 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, int >::type infinity_sign
(constT&x) [related]

10.13.3.5 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_integer
(constT&x) [related]

10.13.3.6 template<typename To , typename From > Enable If< Is_Native_Or_Checked< To >::value
&&ls_Special< From >::value, Result >::type construct (To & to, const From & x,
Rounding_Dir dir) [related]

10.13.3.7 template<typename To , typename From > Enable_If< Is_Native_Or_Checked< To >::value
&&ls_Special< From >::value, Result >::type assign_r (To & to, const From & x,
Rounding_Dir dir) [related]

10.13.3.8 template<typename To > Enable_If< Is_Native_Or_Checked< To >::value, Result >::type
assign_r (To & to, const char « x, Rounding_Dir dir) [related]

10.13.3.9 template<typename To , typename To_Policy > Enable_If< Is_Native_Or_Checked< To >::value,
Result >::type assign_r (To & to, char « x, Rounding_Dir dir) [related]

10.13.3.10 template<typename T, typename Policy >> memory_size_type total_ memory_in_bytes (const
Checked_Number< T, Policy > & x) [related]

Returns the total size in bytes of the memory occupied by x.

10.13.3.11 template<typename T, typename Policy > memory_size_type external_memory_in_bytes (
const Checked_Number< T, Policy > & X) [related]

Returns the size in bytes of the memory managed by x.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. @

http://bugseng.com

188 CONTENTS

10.13.3.12 template<typename T, typename Policy > Checked_Number< T, Policy > operator+ (const
Checked_Number< T, Policy > & x) [related]

Unary plus operator.

10.13.3.13 template<typename T, typename Policy > Checked_Number< T, Policy > operator- (const
Checked_Number< T, Policy > & x) [related]

Unary minus operator.

10.13.3.14 template<typename T, typename Policy > void floor_assign (Checked_Number< T, Policy
>&X) [related]

Assigns to x largest integral value not greater than x.

10.13.3.15 template<typename T, typename Policy > void floor_assign (Checked_Number< T, Policy
> & x, const Checked_Number< T,Policy > &y) [related]

Assigns to x largest integral value not greater than y.

10.13.3.16 template<typename T, typename Policy > void ceil_assign (Checked_Number< T, Policy >
&x) [related]

Assigns to x smallest integral value not less than x.

10.13.3.17 template<typename T, typename Policy > void ceil_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T,Policy > &y) [related]

Assigns to x smallest integral value not less than y.

10.13.3.18 template<typename T, typename Policy > void trunc_assign (Checked_Number< T, Policy
>&X) [related]

Round x to the nearest integer not larger in absolute value.

10.13.3.19 template<typename T, typename Policy > void trunc_assign (Checked_Number< T, Policy
> & x, const Checked_Number< T,Policy > &y) [related]

Assigns to x the value of y rounded to the nearest integer not larger in absolute value.

10.13.3.20 template<typename T, typename Policy > void neg_assign (Checked_Number< T, Policy >
&x) [related]

Assigns to x its negation.

10.13.3.21 template<typename T, typename Policy > void neg_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T, Policy > &y) [related]

Assigns to x the negation of y.

10.13.3.22 template<typename T, typename Policy > void abs_assign (Checked_Number< T, Policy >
&x) [related]

Assigns to x its absolute value.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 189

10.13.3.23 template<typename T, typename Policy > void abs_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T,Policy > &y) [related]

Assigns to x the absolute value of y.

10.13.3.24 template<typename T, typename Policy > void add_mul_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy
>&2z) [related]

Assigns to x the value x + y * z.

10.13.3.25 template<typename T, typename Policy > void sub_mul_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy
>&2z) [related]

Assigns to x the value x — y * z.

10.13.3.26 template<typename T, typename Policy > void gcd_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z)
[related]

Assigns to x the greatest common divisor of y and z.

10.13.3.27 template<typename T, typename Policy > void gcdext_assign (Checked_Number< T,
Policy > & x, Checked_Number< T, Policy > & s, Checked_Number< T, Policy > & t,
const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z)
[related]

Assigns to x the greatest common divisor of v and z, setting s and t such that sxy + txz = x = gcd(y, z).

10.13.3.28 template<typename T, typename Policy > void Icm_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z)
[related]

Assigns to x the least common multiple of v and z.

10.13.3.29 template<typename T, typename Policy > void mul_2exp_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, unsignedintexp) [related]

Assigns to x the value y - 2°%P,

10.13.3.30 template<typename T, typename Policy > void div_2exp_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, unsignedintexp) [related]

Assigns to x the value y /2P,

10.13.3.31 template<typename T, typename Policy > void exact_div_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y; const Checked_Number< T, Policy
>&2z) [related]

If z divides y, assigns to x the quotient of the integer division of y and z.

The behavior is undefined if z does not divide y.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. @

http://bugseng.com

190 CONTENTS

10.13.3.32 template<typename T, typename Policy > void sqrt_assign (Checked_Number< T, Policy >
& x, const Checked_Number< T,Policy > &y) [related]

Assigns to x the integer square root of y.

10.13.3.33 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>::value), bool >::type operator==(const T1 & x, constT2& y) [related]

Equality operator.

10.13.3.34 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type equal (const T1 & x, const T2 & y)
[related]

10.13.3.35 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>::value), bool >::type operator!=(const T1 & x, constT2& y) [related]

Disequality operator.

10.13.3.36 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type not_equal (const T1 & x, const T2 & y)
[related]

10.13.3.37 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>::value), bool >::type operator>=(const T1 & x, const T2& y) [related]

Greater than or equal to operator.

10.13.3.38 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type greater_or_equal (const T1 & x, const T2
&y) I[related]

10.13.3.39 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>::value), bool >::type operator> (const T1 & x, constT2& y) [related]

Greater than operator.

10.13.3.40 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type greater_than (const T1 & x, const T2 & y
) [related]

10.13.3.41 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>1:value), bool >::type operator<=(constT1 & x, const T2& y) [related]

Less than or equal to operator.

10.13.3.42 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type less_or_equal (const T1 & x, const T2 & y
) [related]

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 191

10.13.3.43 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1 >::value||ls_Checked< T2
>::value), bool >::type operator< (const T1 & x, constT2& y) [related]

Less than operator.

10.13.3.44 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked< T1 >::value
&&ls_Native_Or_Checked< T2 >::value, bool >::type less_than (const T1 & x, constT2 & y)
[related]

10.13.3.45 template<typename T > Enable_lf< Is_Native_Or_Checked< T >::value, Result >::type output
(std::ostream & os, const T & x, const Numeric_Format & format, Rounding_Dir dir)
[related]

10.13.3.46 template<typename T, typename Policy > std::ostream & operator< < (std::ostream & os,
const Checked_Number< T, Policy > & X) [related]

Output operator.

10.13.3.47 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, void >::type
ascii_dump (std::ostream & s, constT&t) [related]

Ascii dump for native or checked.

10.13.3.48 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result >::type input (
T & x, std::istream & is, Rounding_Dir dir) [related]

Input function.

Parameters
is | Input stream to read from;
x | Number (possibly extended) to assign to in case of successful reading;
dir | Rounding mode to be applied.
Returns

Result of the input operation. Success, success with imprecision, overflow, parsing error: all possibil-
ities are taken into account, checked for, and properly reported.

This function attempts reading a (possibly extended) number from the given stream i s, possibly rounding
as specified by dir, assigning the result to x upon success, and returning the appropriate Result.

The input syntax allows the specification of:

¢ plain base-10 integer numbers as 34976098, -77 and +13;

* base-10 integer numbers in scientific notation as 15e2 and 15%" 2 (both meaning 15 - 10> = 1500),
9200e-2and -18%"+11111111111111111;

¢ base-10 rational numbers in fraction notation as 15/3 and 15/-3;

* base-10 rational numbers in fraction/scientific notation as 15/30e—-1 (meaning 5) and 15%"-3/29e2
(meaning 3/580000);

* base-10 rational numbers in floating point notation as 71 .3 (meaning 713/10) and -0.123456
(meaning —1929/15625);

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

192

CONTENTS

base-10 rational numbers in floating point scientific notation as 2 . 2e—1 (meaning 11/50) and -2 . -
20001%"+3 (meaning —220001/100);

integers and rationals (in fractional, floating point and scientific notations) specified by using Mathematica-

style bases, in the range from 2 to 36, as 2”11 (meaning 3), 36"z (meaning 35), 36" "xyz
(meaning 44027), 2”11 .1 (meaning 7/2), 10" 2e3 (meaning 2000), 8""2e3 (meaning 1024),
872 .1e3 (meaning 1088), 8”°"20402543.120347e7 (meaning 9073863231288), 8" 2.1
(meaning 17/8); note that the base and the exponent are always written as plain base-10 integer num-
bers; also, when an ambiguity may arise, the character e is interpreted as a digit, so that 16" 1e2
(meaning 482) is different from 16”12 (meaning 256);

the C-style hexadecimal prefix Ox is interpreted as the Mathematica-style prefix 16"";

the C-style binary exponent indicator p can only be used when base 16 has been specified; if used,
the exponent will be applied to base 2 (instead of base 16, as is the case when the indicator e is used);

special values like inf and +inf (meaning +00), —inf (meaning —oo), and nan (meaning "not a
number").

The rationale behind the accepted syntax can be summarized as follows:

Valid
provis

if the syntax is accepted by Mathematica, then this function accepts it with the same semantics;

if the syntax is acceptable as standard C++ integer or floating point literal (except for octal notation
and type suffixes, which are not supported), then this function accepts it with the same semantics;

natural extensions of the above are accepted with the natural extensions of the semantics;

special values are accepted.

syntax is more formally and completely specified by the following grammar, with the additional
os that everything is case insensitive, that the syntactic category BDIGIT is further restricted by the

current base and that for all bases above 14, any e is always interpreted as a digit and never as a delimiter
for the exponent part (if such a delimiter is desired, it has to be written as *”).

number

num

u_num

u_numl

mantis

expone

bdigit

: NAN INF : inf’
SIGN INF ;
INF

|
|
| num NAN : "nan’
| num DIV num ;

i

SIGN
: u_num |
| SIGN u_num ;
: u_numl EXP s el
| HEX u_numl | "p’
| base BASE u_numl |
; ;
POINT HER
: mantissa ;
| mantissa EXP exponent
i DIV A

sa: bdigits
| POINT bdigits MINUS HE
| bdigits POINT ;
| bdigits POINT bdigits
i

PLUS HEE
i
nt: SIGN digits
| digits HEX . 1 0x!
; ;
s : BDIGIT BASE HERA

bdigits BDIGIT ;

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.13 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 193

DIGIT 07 L. 9
digits : DIGIT ;
| digits DIGIT
; BDIGIT : ’0'
a

10.13.3.49 template<typename T, typename Policy > std::istream & operator>> (std::istream & is,
Checked_Number< T, Policy > & x) [related]

Input operator.

10.13.3.50 template<typename T > Enable_lf< Is_Native_Or_Checked< T >::value, bool >::type
ascii_load (std::ostream & s, T&t) [related]

Ascii load for native or checked.

10.13.3.51 template<typename T, typename Policy > void swap (Checked_Number< T, Policy > & x,
Checked_Number< T, Policy > &y) [related]

Swaps x with y.

10.13.3.52 template<typename T, typename Policy > const T & raw_value (const Checked_Number< T,
Policy > & x) [related]

10.13.3.53 template<typename T, typename Policy > T & raw_value (Checked_Number< T, Policy > &
X) [related]

10.13.3.54 template<typename T, typename Policy > memory_size_type total_ memory_in_bytes (const
Checked_Number< T, Policy > & x) [related]

10.13.3.55 template<typename T, typename Policy > memory_size_type external_memory_in_bytes (
const Checked_Number< T, Policy > & x) [related]

10.13.3.56 template<typename To > Enable_lf< Is_Native_Or_Checked< To >::value, Result >::type
assign_r (To & to, const char « x, Rounding_Dir dir) [related]

10.13.3.57 template<typename T, typename Policy > Checked_Number< T, Policy > operator+ (const
Checked_Number< T, Policy > & x) [related]

10.13.3.58 template<typename T, typename Policy > Checked_Number< T, Policy > operator- (const
Checked_Number< T, Policy > & x) [related]

10.13.3.59 template<typename From > Enable_If< Is_Native_Or_Checked< From >::value, int >::type
sgn(constFrom& x) [related]

10.13.3.60 template<typename From1 , typename From2 > Enable_If< Is_Native_Or_Checked< From1
>1:value &&ls_Native_Or_Checked< From2 >::value, int >::type cmp (const From1 & x, const
From2&y) [related]

10.13.3.61 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result >::type output
(std::ostream & os, const T & x, const Numeric_Format & format, Rounding_Dir dir)
[related]

10.13.3.62 template<typename T, typename Policy > std::ostream & operator<< (std::ostream & os,
const Checked_Number< T, Policy > & X) [related]

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

194 CONTENTS

10.13.3.63 template<typename T > Enable_lf< Is_Native_Or_Checked< T >::value, Result >::type input (
T & x, std::istream & is, Rounding_Dir dir) [related]

10.13.3.64 template<typename T, typename Policy > std::istream & operator>> (std::istream & is,
Checked_Number< T, Policy > & x) [related]

10.13.3.65 template<typename T, typename Policy > void swap (Checked_Number< T, Policy > & x,
Checked_Number< T, Policy > &y) [related]

The documentation for this class was generated from the following file:

e ppl.hh

10.14 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference

A total ordering on BHRZ03 certificates.
#include <ppl.hh>

Public Member Functions
* bool operator() (const BHRZ03_Certificate &x, const BHRZ03_Certificate &y) const
Returns t rue if and only if x comes before y.
10.14.1 Detailed Description

A total ordering on BHRZ03 certificates.

This binary predicate defines a total ordering on BHRZ03 certificates which is used when storing informa-
tion about sets of polyhedra.

The documentation for this struct was generated from the following file:

e pplLhh

10.15 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.

#include <ppl.hh>

Public Member Functions

* bool operator() (const H79_Certificate &x, const H79_Certificate &y) const

Returns t rue if and only if x comes before y.

10.15.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.16 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference 195

The documentation for this struct was generated from the following file:

* ppl.hh

10.16 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference
A total ordering on Grid certificates.
#include <ppl.hh>
Public Member Functions
* bool operator() (const Grid_Certificate &x, const Grid_Certificate &y) const
Returns t rue if and only if x comes before y.
10.16.1 Detailed Description

A total ordering on Grid certificates.

This binary predicate defines a total ordering on Grid certificates which is used when storing information
about sets of grids.

The documentation for this struct was generated from the following file:

e ppl.hh

10.17 Parma_Polyhedra_Library::Variable::Compare Struct Reference
Binary predicate defining the total ordering on variables.

#include <ppl.hh>

Public Member Functions

* bool operator() (Variable x, Variable y) const

Returns t rue if and only if x comes before y.

10.17.1 Detailed Description

Binary predicate defining the total ordering on variables.

The documentation for this struct was generated from the following file:

* ppl.hh

10.18 Parma_Polyhedra_Library::Concrete Expression Class Reference

The base class of all concrete expressions.

#include <ppl.hh>

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

196 CONTENTS

Related Functions
(Note that these are not member functions.)

* template<typename Target , typename FP_Interval_Type >
static bool add_linearize (const Binary_Operator< Target > &bop_expr, const FP_Oracle< Target,
FP_Interval_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type
> > &lIf_store, Linear_Form< FP_Interval_Type > &result)

* template<typename Target , typename FP_Interval_Type >
static bool sub_linearize (const Binary_Operator< Target > &bop_expr, const FP_Oracle< Target,
FP_Interval_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type
> > &lIf_store, Linear_Form< FP_Interval_Type > &result)

* template<typename Target , typename FP_Interval_Type >
static bool mul_linearize (const Binary_Operator< Target > &bop_expr, const FP_Oracle< Target,
FP_Interval_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type
> > &lf_store, Linear_Form< FP_Interval_Type > &result)

* template<typename Target , typename FP_Interval_Type >
static bool div_linearize (const Binary_Operator< Target > &bop_expr, const FP_Oracle< Target,
FP_Interval_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type
> > &lIf_store, Linear_Form< FP_Interval_Type > &result)

* template<typename Target , typename FP_Interval_Type >
static bool cast_linearize (const Cast_Operator< Target > &cast_expr, const FP_Oracle< Target,
FP_Interval_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type
> > &If_store, Linear_ Form< FP_Interval_Type > &result)

* template<typename Target , typename FP_Interval_Type >
bool linearize (const Concrete_Expression< Target > &expr, const FP_Oracle< Target, FP_Interval-
_Type > &oracle, const std::map< dimension_type, Linear_Form< FP_Interval_Type > > &If_-
store, Linear_Form< FP_Interval_Type > &result)

Linearizes a floating point expression.

10.18.1 Detailed Description

The base class of all concrete expressions.

10.18.2 Friends And Related Function Documentation

10.18.2.1 template<typename Target , typename FP _Interval_Type > static bool add_linearize (const
Binary_Operator< Target > & bop_expr, const FP_Oracle< Target, FP_Interval_Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval Type > > & If store,
Linear_Form< FP_Interval_ Type > & result) [related]

Helper function used by 1inearize to linearize a sum of floating point expressions.

Makes result become the linearization of *this in the given composite abstract store.

Template Parameters

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.18 Parma_Polyhedra_Library::Concrete_Expression Class Reference 197

Returns

true if the linearization succeeded, £alse otherwise.

Parameters
bop_expr | The binary operator concrete expression to linearize. Its binary operator type must be
ADD.
oracle | The FP_Oracle to be queried.
If _store | The linear form abstract store.
result | The modified linear form.

Linearization of sum floating-point expressions

Leti+) cyd,vandd +3) i vbe two linear forms and AB# a sound abstract operator on linear forms
such that:

(i +> m) B <i’ +> m) =(ie®i)+) (iye?i,)v.

vey veY veV

Given an expression e; @ ez and a composite abstract store [[p#, pl#]] , we construct the interval linear form

ler @ ea) [[p#, pﬂ] as follows:

lerdea) [o#, o | = texd [o#, o [E# tead [%, o [B#ee (tead [, o]) Ber (1) [, o]) B#msel—1,1

where e¢(l) is the relative error associated to ! (see method relative_error of class Linear_Form)
and m fr is a rounding error computed by function compute_absolute_error.

10.18.2.2 template<typename Target , typename FP _Interval_Type > static bool sub_linearize (const
Binary_Operator< Target > & bop_expr, const FP_Oracle< Target, FP_Interval_Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval Type > > & If store,
Linear_Form< FP_Interval_Type > & result) [related]

Helper function used by 1inearize to linearize a difference of floating point expressions.

Makes result become the linearization of *this in the given composite abstract store.

Template Parameters

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

Returns

t rue if the linearization succeeded, £alse otherwise.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

198 CONTENTS

Parameters
bop_expr | The binary operator concrete expression to linearize. Its binary operator type must be
SUB.
oracle | The FP_Oracle to be queried.
If _store | The linear form abstract store.
result | The modified linear form.

Linearization of difference floating-point expressions

Leti+ Y., cypiovand i’ + 3, oy, i be two linear forms, % and 5% two sound abstract operators on
linear form such that:

(i +> m) m#* (z” +> i;v> =(io® i)+ (ivo¥i,) v,

veV veV veV

(i) +) (i,o¥i,)v.

veEY

(z’ +> m) g#* <¢’ + Zm)

veV veY
Given an expression e © ez and a composite abstract store [[p#, pﬂ] , we construct the interval linear form

(e1 © e2) [[p#, pﬂ] on V as follows:

(ersen) [o* o | = tead [% o | E* o) [0% o | EPee ((ead [% o])P 2e (le2) [, o |) E#mfel-1.1]

where e¢(l) is the relative error associated to [(see method relative_error of class Linear_Form)
and m fr is a rounding error computed by function compute_absolute_error.

10.18.2.3 template<typename Target , typename FP_Interval_Type > static bool mul_linearize (const
Binary_Operator< Target > & bop_expr, const FP_Oracle< Target, FP_Interval _Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval Type > > & If store,
Linear_Form< FP_Interval_ Type > & result) [related]

Helper function used by 1inearize to linearize a product of floating point expressions.

Makes result become the linearization of xthis in the given composite abstract store.

Template Parameters

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

Returns

t rue if the linearization succeeded, false otherwise.

Parameters
bop_expr | The binary operator concrete expression to linearize. Its binary operator type must be
MUL.
z! The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.18 Parma_Polyhedra_Library::Concrete_Expression Class Reference 199

oracle | The FP_Oracle to be queried.

If _store | The linear form abstract store.

result | The modified linear form.

Linearization of multiplication floating-point expressions

Leti+ Y., cypiovand i’ + >, oy, it be two linear forms, % and X# two sound abstract operators on
linear forms such that:

(i +3° m) m* (i’ +> i;v> =@e® i)+) (ive® i),

vey veV veV
i }# (i’+zz‘;v> = (ie® i)+) (ie¥i,)v.
vey veV
Given an expression [a, b] ® e3 and a composite abstract store Hp#, pﬂ] , we construct the interval linear

form ([a, b] ® e2)) [[p#, pﬂ] as follows:

lla.)@ea) [0, o | = (10,6155 (ea [o#, o]) 87 (I, 0 0% e (Geab [0, o])) B8 s =1, 1],

Given an expression e; ® [a, b] and a composite abstract store [[p#, pﬂ] , we construct the interval linear

form (e; ® [a, b]) [[p#,pﬂ] as follows:

lex® [a,) [0, pF] = lla W] @ ex) [*,]

Given an expression e; ® es and a composite abstract store Hp#, pl#]] , we construct the interval linear form

ler ® ea) [[p#, pﬂ] as follows:

(e1 ® e2) [[p#,pﬂ] = (v (0611) ﬂp#,pfp p* @ e3) [[p#, pﬂ] :

where e¢(() is the relative error associated to [(see method relative_error of class Linear_Form),
t(1)p* is the intervalization of [(see method intervalize of class Linear_Form), and m f¢ is a rounding
error computed by function compute_absolute_error.

Even though we intervalize the first operand in the above example, the actual implementation utilizes an
heuristics for choosing which of the two operands must be intervalized in order to obtain the most precise
result.

10.18.2.4 template<typename Target , typename FP_Interval_Type > static bool div_linearize (const
Binary_Operator< Target > & bop_expr, const FP_Oracle< Target, FP_Interval _Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval Type > > & If store,
Linear_Form< FP_Interval Type > & result) [related]

Helper function used by 1inearize to linearize a division of floating point expressions.

Makes result become the linearization of xthis in the given composite abstract store.

Template Parameters

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

200 CONTENTS

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

Returns

true if the linearization succeeded, false otherwise.

Parameters
bop_expr | The binary operator concrete expression to linearize. Its binary operator type must be
DIV.
oracle | The FP_Oracle to be queried.
If _store | The linear form abstract store.
result | The modified linear form.

Linearization of division floating-point expressions

Leti+ Y,y ivvand i’ + 3, o, @0 be two linear forms, B# and @ two sound abstract operator on
linear forms such that:

(z’ +> m) B <¢’ +> m) =(ie* i)+) (ive?i,)w,

veY % veVY
<i +> m) o# i’ = (io* i)+ (i, 0% i) v.
veY
Given an expression e; @ [a, b] and a composite abstract store [[p#, pﬂ] , we construct the interval linear

form (e; @ [a, b]) [[p#,pféﬂ as follows:

(ex2la,) [, o] = (e [o] @ la01) 8% (o1 (4erd [%, 5]) 2% [, 0]) B mfel-1, 1),

given an expression e; @ e, and a composite abstract store [[p#, pﬂ] , we construct the interval linear form

ler @ ea) [[p#, pﬂ] as follows:

(e1 @ ea) [[p#,pﬂ] =(e1 @0 (062[) [[p#,pl#]]) p*) [[p#,pﬂ] 7

where ¢(1) is the relative error associated to [(see method relative_error of class Linear_Form),
t(1)p™ is the intervalization of [(see method intervalize of class Linear_Form), and m f¢ is a rounding
error computed by function compute_absolute_error.

10.18.2.5 template<typename Target , typename FP_Interval Type > static bool cast_linearize (const
Cast_Operator< Target > & cast_expr, const FP_Oracle< Target, FP_Interval Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval _Type > > & If_store,
Linear_Form< FP_Interval_ Type > & result) [related]

Helper function used by 1inearize to linearize a cast floating point expression.

Makes result become the linearization of *this in the given composite abstract store.

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.18 Parma_Polyhedra_Library::Concrete_Expression Class Reference 201

Template Parameters

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

Returns

t rue if the linearization succeeded, £alse otherwise.

Parameters
cast_expr | The cast operator concrete expression to linearize.
oracle | The FP_Oracle to be queried.
If store | The linear form abstract store.
result | The modified linear form.

10.18.2.6 template<typename Target , typename FP_Interval _Type > bool linearize (const
Concrete_Expression< Target > & expr, const FP_Oracle< Target, FP_Interval _Type > &
oracle, const std::map< dimension_type, Linear_Form< FP_Interval Type > > & If store,
Linear_Form< FP_Interval Type > & result) [related]

Linearizes a floating point expression.

Makes result become a linear form that correctly approximates the value of expr in the given composite
abstract store.

Template Parameters

Target | A type template parameter specifying the instantiation of Concrete_Expression to
be used.

FP_Interval_Type | A type template parameter for the intervals used in the abstract domain. The inter-
val bounds should have a floating point type.

Returns

true if the linearization succeeded, false otherwise.

Parameters

expr | The concrete expression to linearize.
oracle | The FP_Oracle to be queried.
If _store | The linear form abstract store.
result | Becomes the linearized expression.

Formally, if expr represents the expression e and 1 £_store represents the linear form abstract store pf,

then result will become (e]) [[p#, pl#]] if the linearization succeeds.

The documentation for this class was generated from the following file:

e ppl.hh

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

202 CONTENTS

10.19 Parma_Polyhedra_Library::Concrete Expression Common< Target > Class Tem-
plate Reference

Base class for all concrete expressions.

#include <ppl.hh>

Public Member Functions

* Concrete_Expression_Type type () const

Returns the type of \x this.
» Concrete_Expression_Kind kind () const

Returns the kind of \x this.
¢ template<template< typename T > class Derived >
bool is () const

Tests if xt his has the same kind as Derived<Target>.

¢ template<template< typename T > class Derived >
Derived< Target > * as ()

Returns a pointer to xt his converted to type Derived<Target>.
¢ template<template< typename T > class Derived >
const Derived< Target > x* as () const

Returns a pointer to xt his converted to type const Derived<Target>x.

10.19.1 Detailed Description
template<typename Target>class Parma_Polyhedra_Library::Concrete_Expression_Common< Target >

Base class for all concrete expressions.

The documentation for this class was generated from the following file:

e ppl.hh

10.20 Parma_Polyhedra_Library::Concrete_Expression_Type Class Reference

The type of a concrete expression.

#include <ppl.hh>

Public Member Functions

* bool is_bounded_integer () const

Returns t rue if and only if ¥t his is a bounded integer type.
* bool is_floating_point () const

Returns t rue if and only if xt his is a floating point type.
* Bounded_Integer_Type_Width bounded_integer_type_width () const

Returns the width in bits of the bounded integer type encoded by xthis.
* Bounded_Integer_Type_Representation bounded_integer_type_representation () const

Returns the representation of the bounded integer type encoded by xthis.

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.20 Parma_Polyhedra_Library::Concrete_Expression_Type Class Reference 203

* Bounded_Integer_Type_Overflow bounded_integer_type_overflow () const

Returns the overflow behavior of the bounded integer type encoded by xt his.
* Floating_Point_Format floating_point_format () const

Returns the format of the floating point type encoded by xthis.
¢ bool OK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

« static Concrete_Expression_Type bounded_integer (Bounded_Integer_Type_Width width, Bounded-
_Integer_Type_Representation representation, Bounded_Integer_Type_Overflow overflow)

Returns the bounded integer type corresponding to width, representationand overflow.
* static Concrete_Expression_Type floating_point (Floating_Point_Format format)

Returns the floating point type corresponding to format.

10.20.1 Detailed Description

The type of a concrete expression.

10.20.2 Member Function Documentation

10.20.2.1 Bounded_Integer_Type_Width Parma_Polyhedra_Library::Concrete_Expression_Type-
::bounded _integer_type width ()const [inline]

Returns the width in bits of the bounded integer type encoded by *this.

The behavior is undefined if *this does not encode a bounded integer type.

10.20.2.2 Bounded_Integer_Type_Representation Parma_Polyhedra_Library::-
Concrete_Expression_Type::bounded_integer_type_representation () const
[inline]

Returns the representation of the bounded integer type encoded by *this.

The behavior is undefined if *this does not encode a bounded integer type.

10.20.2.3 Bounded_Integer_Type_Overflow Parma_Polyhedra_Library::Concrete_Expression_Type-
::bounded _integer_type_overflow ()const [inline]

Returns the overflow behavior of the bounded integer type encoded by *xthis.

The behavior is undefined if xthis does not encode a bounded integer type.

10.20.2.4 Floating_Point_Format Parma_Polyhedra_Library::Concrete_Expression_Type::floating_point_-
format()const [inline]

Returns the format of the floating point type encoded by xthis.
The behavior is undefined if *this does not encode a floating point type.

The documentation for this class was generated from the following file:

e ppl.hh

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

204

CONTENTS

10.21

Parma_Polyhedra_Library::Congruence Class Reference

A linear congruence.

#include <ppl.hh>

Public Types

typedef Linear_Expression Expression

Public Member Functions

Congruence (Representation r=default_representation)

Constructs the 0 = 0 congruence with space dimension 0 .
Congruence (const Congruence &cg)

Ordinary copy constructor.
Congruence (const Congruence &cg, Representation r)

Copy constructor with specified representation.

Congruence (const Constraint &c, Representation r=default_representation)

Copy-constructs (modulo 0) from equality constraint c.
~Congruence ()
Destructor.
Congruence & operator= (const Congruence &y)
Assignment operator.
Representation representation () const
Returns the current representation of this.
void set_representation (Representation r)
Converts xthis to the specified representation.
dimension_type space_dimension () const
Returns the dimension of the vector space enclosing xthis.
Coefficient_traits::const_reference coefficient (Variable v) const
Returns the coefficient of vin xthis.
Coefficient_traits::const_reference inhomogeneous_term () const
Returns the inhomogeneous term of xthis.
Coefficient_traits::const_reference modulus () const
Returns a const reference to the modulus of xt his.
void set_modulus (Coefficient_traits::const_reference m)
void scale (Coefficient_traits::const_reference factor)
Multiplies all the coefficients, including the modulus, by factor.
Congruence & operator/= (Coefficient_traits::const_reference k)
Multiplies k into the modulus of xt his.
bool is_tautological () const

Returns t rue if and only if xt his is a tautology (i.e., an always true congruence).

bool is_inconsistent () const

Returns t rue if and only if xt his is inconsistent (i.e., an always false congruence).

bool is_proper_congruence () const

Returns t rue if the modulus is greater than zero.
bool is_equality () const

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.21 Parma_Polyhedra_Library::Congruence Class Reference 205

Returns true if xthis is an equality.
memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by *this.
memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

bool OK () const
Checks if all the invariants are satisfied.
void ascii_dump () const
Writes to std: : cerr an ASCII representation of xthis.
void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.
void print () const

Prints xthisto std: :cerrusing operator<<.
bool ascii_load (std::istream &s)

Loads from s an ASCII representation of the internal representation of xt his.
void m_swap (Congruence &y)
Swaps «this with y.
Congruence (const Congruence &cg, dimension_type new_space_dimension)
Copy-constructs with the specified space dimension.
Congruence (const Congruence &cg, dimension_type new_space_dimension, Representation r)
Copy-constructs with the specified space dimension and representation.
Congruence (const Constraint &cg, dimension_type new_space_dimension, Representation r=default-
_representation)
Congruence (Linear_Expression &le, Coefficient_traits::const_reference m, Recycle_Input)
Constructs from Linear_Expression 1e, using modulus m.
void swap_space_dimensions (Variable v1, Variable v2)
Swaps the coefficients of the variables v1 and v2 .
void set_space_dimension (dimension_type n)
void shift_space_dimensions (Variable v, dimension_type n)
void sign_normalize ()
Normalizes the signs.
void normalize ()
Normalizes signs and the inhomogeneous term.
void strong_normalize ()

Calls normalize, then divides out common factors.

Static Public Member Functions

static dimension_type max_space_dimension ()
Returns the maximum space dimension a Congruence can handle.
static void initialize ()
Initializes the class.
static void finalize ()
Finalizes the class.
static const Congruence & zero_dim_integrality ()

Returns a reference to the true (zero-dimension space) congruence 0 = 1 (mod 1), also known as the
integrality congruence.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

206

CONTENTS

* static const Congruence & zero_dim_false ()

Returns a reference to the false (zero-dimension space) congruence 0 = 1 (mod 0).

« static Congruence create (const Linear_Expression &el, const Linear_Expression &e2, Representa-

tion r=default_representation)

Returns the congruence el = e2 (mod 1).

» static Congruence create (const Linear_Expression &e, Coefficient_traits::const_reference n, Repre-

sentation r=default_representation)

Returns the congruence e = n (mod 1).

« static Congruence create (Coefficient_traits::const_reference n, const Linear_Expression &e, Repre-

sentation r=default_representation)

Returns the congruence n = e (mod 1).

Static Public Attributes

* static const Representation default_representation = SPARSE

The representation used for new Congruences.

Related Functions

(Note that these are not member functions.)

* bool operator== (const Congruence &x, const Congruence &y)

Returns t rue if and only if x and y are equivalent.

* bool operator!= (const Congruence &x, const Congruence &y)

Returns false if and only if x and y are equivalent.

e std::ostream & operator<< (std::ostream &s, const Congruence &c)

Output operators.

* Congruence operator%= (const Linear_Expression &el, const Linear_Expression &e2)

Returns the congruence el = e2 (mod 1).

» Congruence operator%= (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the congruence e = n (mod 1).

» Congruence operator/ (const Congruence &cg, Coefficient_traits::const_reference k)

Returns a copy of cg, multiplying k into the copy’s modulus.
* Congruence operator/ (const Constraint &c, Coefficient_traits::const_reference m)

Creates a congruence from c, with m as the modulus.
* void swap (Congruence &x, Congruence &y)
» Congruence operator%= (const Linear_Expression &el, const Linear_Expression &e2)
» Congruence operator%= (const Linear_Expression &e, Coefficient_traits::const_reference n)
» Congruence operator/ (const Congruence &cg, Coefficient_traits::const_reference k)
» Congruence operator/ (const Constraint &c, Coefficient_traits::const_reference m)
* bool operator== (const Congruence &x, const Congruence &y)
* bool operator!= (const Congruence &x, const Congruence &y)

* void swap (Congruence &x, Congruence &y)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.21 Parma_Polyhedra_Library::Congruence Class Reference 207

10.21.1 Detailed Description

A linear congruence.

An object of the class Congruence is a congruence:
«cg =" aix; +b=0 (mod m)

where n is the dimension of the space, a; is the integer coefficient of variable z;, b is the integer inho-

mogeneous term and m is the integer modulus; if m = 0, then cg represents the equality congruence
n—1 . . .

> i @iwi + b =0and, if m # 0, then the congruence cg is said to be a proper congruence.

How to build a congruence

Congruences (mod 1) are typically built by applying the congruence symbol ‘%=’ to a pair of lin-
ear expressions. Congruences with modulus m are typically constructed by building a congruence
(mod 1) using the given pair of linear expressions and then adding the modulus m using the modulus
symbol is /.

The space dimension of a congruence is defined as the maximum space dimension of the arguments of its
constructor.

In the following examples it is assumed that variables x, v and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds the equality congruence 3z + 5y — z = 0, having space dimension 3:

Congruence eg_cg((3*x + 5y - z %= 0) / 0);

The following code builds the congruence 4z = 2y — 13 (mod 1), having space dimension 2:

Congruence modl_cg(4*xx %= 2xy - 13);

The following code builds the congruence 4z = 2y — 13 (mod 2), having space dimension 2:

o

Congruence mod2_cg((4*x %= 2xy — 13) / 2);

An unsatisfiable congruence on the zero-dimension space R° can be specified as follows:

Congruence false_cg = Congruence::zero_dim_false
()7

Equivalent, but more involved ways are the following:

Congruence false_cgl ((Linear_Expression::zero

) %=1) / 0);
Congruence false_cg2 ((Linear_Expression::zero
O %=1) / 2);

In contrast, the following code defines an unsatisfiable congruence having space dimension 3:
Congruence false_cg3((0xz %= 1) / 0);
How to inspect a congruence

Several methods are provided to examine a congruence and extract all the encoded information: its
space dimension, its modulus and the value of its integer coefficients.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

208 CONTENTS

Example 2

The following code shows how it is possible to access the modulus as well as each of the coefficients.
Given a congruence with linear expression e and modulus m (in this case — 5y + 3z = 4 (mod 5)),
we construct a new congruence with the same modulus m but where the linear expression is 2e (
2z — 10y + 6z = 8 (mod 5)).

Congruence cgl((x — 5%y + 3%z %= 4) / 5);

cout << "Congruence cgl: " << cgl << endl;
const Coefficient& m = cgl.modulus();
if (m == 0)
cout << "Congruence cgl is an equality." << endl;

else {
Linear_Expression e;
for (dimension_type 1 = cgl.space_dimension(); i-- > 0;)
e += 2 x cgl.coefficient (Variable(i)) * Variable(i);
e += 2 x cgl.inhomogeneous_term() ;
Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;
}

The actual output could be the following:

Congruence cgl: A — 5xB + 3xC %= 4 / 5
Congruence cg2: 2xA — 10%B + 6%C %= 8 / 5

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) congruence considered.

10.21.2 Member Typedef Documentation

10.21.2.1 typedef Linear_Expression Parma_Polyhedra_Library::Congruence::Expression

The type returned by the expression() method, that provides most of the const methods in Linear_Expression.

10.21.3 Constructor & Destructor Documentation
10.21.3.1 Parma_Polyhedra_Library::Congruence::Congruence (const Congruence & cg) [inline]

Ordinary copy constructor.

Note

The new Congruence will have the same representation as ‘cg’, not default_representation, so that they
are indistinguishable.

10.21.3.2 Parma_Polyhedra_Library::Congruence::Congruence (const Constraint & ¢, Representation r
=default_representation) [explicit]

Copy-constructs (modulo 0) from equality constraint c.

Exceptions

‘ std::invalid_argument ‘ Thrown if c is an inequality.

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.21 Parma_Polyhedra_Library::Congruence Class Reference 209

10.21.3.3 Parma_Polyhedra_Library::Congruence::Congruence (const Congruence & cg,
dimension_type new_space_dimension) [inline]

Copy-constructs with the specified space dimension.

Note

The new Congruence will have the same representation as ‘cg’, not default_representation, for consis-
tency with the copy constructor.

10.21.3.4 Parma_Polyhedra_Library::Congruence::Congruence (const Constraint & ¢g, dimension_type
new_space_dimension, Representation r = default_representation)
Copy-constructs from a constraint, with the specified space dimension and (optional) representation.

10.21.3.5 Parma_Polyhedra_Library::Congruence::Congruence (Linear_Expression & le,
Coefficient_traits::const_reference m, Recycle_Input) [inline]

Constructs from Linear_Expression 1e, using modulus m.

Builds a congruence with modulus m, stealing the coefficients from le.

Note

The new Congruence will have the same representation as ‘le’.

Parameters

le | The Linear_Expression holding the coefficients.
m | The modulus for the congruence, which must be zero or greater.

10.21.4 Member Function Documentation

10.21.4.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Congruence::coefficient (Variable
v)const [inline]

Returns the coefficient of v in *this.

Exceptions

‘ std::invalid_argument ‘ thrown if the index of v is greater than or equal to the space dimension of xthis.

10.21.4.2 void Parma_Polyhedra_Library::Congruence::set_modulus (Coefficient_traits::const_reference m
) [inline]

Sets the modulus of xthis tom . If mis 0, the congruence becomes an equality.

10.21.4.3 Congruence & Parma_Polyhedra_Library::Congruence::operator/= (
Coefficient_traits::const_reference k) [inline]
Multiplies k into the modulus of *this.

If called with *this representing the congruence ¢; = es (mod m), then it returns with xthis represent-
ing the congruence e; = es (mod mk).

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

210 CONTENTS

10.21.4.4 bool Parma_Polyhedra_Library::Congruence::is_tautological () const

Returns t rue if and only if ¥t his is a tautology (i.e., an always true congruence).

A tautological congruence has one the following two forms:

* an equality: Z?:_Ol O0x; + 0 == 0; or

* a proper congruence: Z?:_()l 0x; + b% = 0/m, where b = 0 (mod m).

10.21.4.5 bool Parma_Polyhedra_Library::Congruence::is_inconsistent () const

Returns t rue if and only if xthis is inconsistent (i.e., an always false congruence).

An inconsistent congruence has one of the following two forms:

* an equality: Z;:Ol 0xz; + b == 0 where b # 0; or

* a proper congruence: Z?:_Ol 0x; + b% = 0/m, where b # 0 (mod m).

10.21.4.6 bool Parma_Polyhedra_Library::Congruence::is_proper_congruence ()const [inline]

Returns t rue if the modulus is greater than zero.

A congruence with a modulus of 0 is a linear equality.
10.21.4.7 bool Parma_Polyhedra_Library::Congruence::is_equality ()const [inline]

Returns t rue if xthis is an equality.

A modulus of zero denotes a linear equality.

10.21.4.8 void Parma_Polyhedra_Library::Congruence::set_space_dimension (dimension_type n)
[inline]

Sets the space dimension by n , adding or removing coefficients as needed.

10.21.4.9 void Parma_Polyhedra_Library::Congruence::shift_space _dimensions (Variable ,
dimension_typen) [inline]

Shift by n positions the coefficients of variables, starting from the coefficient of v. This increases the space
dimension by n.

10.21.4.10 void Parma_Polyhedra_Library::Congruence::sign_normalize ()

Normalizes the signs.

The signs of the coefficients and the inhomogeneous term are normalized, leaving the first non-zero homo-
geneous coefficient positive.

10.21.4.11 void Parma_Polyhedra_Library::Congruence::normalize ()

Normalizes signs and the inhomogeneous term.

Applies sign_normalize, then reduces the inhomogeneous term to the smallest possible positive number.
10.21.4.12 void Parma_Polyhedra_Library::Congruence::strong_normalize ()

Calls normalize, then divides out common factors.

(J

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.21 Parma_Polyhedra_Library::Congruence Class Reference 211

Strongly normalized Congruences have equivalent semantics if and only if they have the same syntax (as
output by operator< <).

10.21.5 Friends And Related Function Documentation

10.21.5.1 bool operator== (const Congruence & x, const Congruence & y) [related]
Returns t rue if and only if x and y are equivalent.

10.21.5.2 bool operator!= (const Congruence & x, const Congruence &y) [related]
Returns false if and only if x and y are equivalent.

10.21.5.3 std::ostream & operator< < (std::ostream & s, const Congruence & ¢) [related]
Output operators.

10.21.5.4 Congruence operator%=(const Linear_Expression & e1, const Linear_Expression & 2)
[related]

Returns the congruence el = e2 (mod 1).

10.21.5.5 Congruence operator%= (const Linear_Expression & e, Coefficient_traits::const_reference n
) [related]

Returns the congruence e = n (mod 1).

10.21.5.6 Congruence operator/ (const Congruence & cg, Coefficient_traits::const_reference k)
[related]

Returns a copy of cg, multiplying k into the copy’s modulus.

If cg represents the congruence e; = es (mod m), then the result represents the congruence e; = es
(mod mk).

10.21.5.7 Congruence operator/ (const Constraint & ¢, Coefficient traits::const_reference m)
[related]

Creates a congruence from c, with m as the modulus.
10.21.5.8 void swap (Congruence & X, Congruence &y) [related]

10.21.5.9 Congruence operator%= (const Linear_Expression & e1, const Linear_Expression & €2)
[related]

10.21.5.10 Congruence operator%= (const Linear_Expression & e, Coefficient_traits::const_reference
n) [related]

10.21.5.11 Congruence operator/ (const Congruence & cg, Coefficient_traits::const_reference k)
[related]

10.21.5.12 Congruence operator/ (const Constraint & ¢, Coefficient_traits::const_reference m)
[related]

10.21.5.13 bool operator==(const Congruence & x, const Congruence &y) [related]

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

212 CONTENTS

10.21.5.14 bool operator!= (const Congruence & X, const Congruence & y) [related]
10.21.5.15 void swap (Congruence & X, Congruence &y) [related]

10.21.6 Member Data Documentation

10.21.6.1 const Representation Parma_Polyhedra_Library::Congruence::default_representation =
SPARSE [static]

The representation used for new Congruences.

Note

The copy constructor and the copy constructor with specified size use the representation of the original
object, so that it is indistinguishable from the original object.

The documentation for this class was generated from the following file:

e pplLhh

10.22 Parma_Polyhedra_Library::Congruence _System Class Reference

A system of congruences.

#include <ppl.hh>

Classes

¢ class const_iterator

An iterator over a system of congruences.

Public Member Functions

* Congruence_System (Representation r=default_representation)

Default constructor: builds an empty system of congruences.
» Congruence_System (dimension_type d, Representation r=default_representation)

Builds an empty (i.e. zero rows) system of dimension d.
* Congruence_System (const Congruence &cg, Representation r=default_representation)

Builds the singleton system containing only congruence cg.
» Congruence_System (const Constraint &c, Representation r=default_representation)

If ¢ represents the constraint e1 = ez, builds the singleton system containing only constraint e; = ez
(mod 0).

* Congruence_System (const Constraint_System &cs, Representation r=default_representation)
Builds a system containing copies of any equalities in cs.

* Congruence_System (const Congruence_System &cgs)
Ordinary copy constructor.

* Congruence_System (const Congruence_System &cgs, Representation r)
Copy constructor with specified representation.

e ~Congruence_System ()

Destructor.

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.22 Parma_Polyhedra_Library::Congruence_System Class Reference 213

Congruence_System & operator= (const Congruence_System &y)

Assignment operator.
Representation representation () const

Returns the current representation of xthis.
void set_representation (Representation r)

Converts xthis to the specified representation.
dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xt his.
bool is_equal_to (const Congruence_System &y) const

Returns t rue if and only if xt his is exactly equal to y.
bool has_linear_equalities () const

Returns t rue if and only if xt his contains one or more linear equalities.
void clear ()

Removes all the congruences and sets the space dimension to 0.
void insert (const Congruence &cg)

Inserts in xt his a copy of the congruence cg, increasing the number of space dimensions if needed.
void insert (Congruence &cg, Recycle_Input)
Inserts in xt his the congruence cg, stealing its contents and increasing the number of space dimensions
if needed.
void insert (const Constraint &c)
Inserts in xt his a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.
void insert (const Congruence_System &y)
Inserts in xthis a copy of the congruences in y, increasing the number of space dimensions if needed.
void insert (Congruence_System &cgs, Recycle_Input)

Inserts into xt his the congruences in cgs, increasing the number of space dimensions if needed.
bool empty () const

Returns t rue if and only if xt his has no congruences.
const_iterator begin () const
Returns the const_iterator pointing to the first congruence, if xthis is not empty, otherwise, returns the
past-the-end const_iterator.
const_iterator end () const
Returns the past-the-end const_iterator.
bool OK () const
Checks if all the invariants are satisfied.
void ascii_dump () const
Writes to std: : cerr an ASCII representation of xt his.
void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.
void print () const
Prints xthis to std: :cerrusing operator<<.
bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthi s.
memory_size_type external_memory_in_bytes () const

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

214 CONTENTS

Returns the size in bytes of the memory managed by xthis.

 dimension_type num_equalities () const

Returns the number of equalities.

* dimension_type num_proper_congruences () const

Returns the number of proper congruences.
* void m_swap (Congruence_System &y)
Swaps xthis with y.
* void add_unit_rows_and_space_dimensions (dimension_type dims)

Adds dims rows and dims space dimensions to the matrix, initializing the added rows as in the unit
congruence system.

* void permute_space_dimensions (const std::vector< Variable > &cycle)

Permutes the space dimensions of the system.

* void swap_space_dimensions (Variable v1, Variable v2)

Swaps the columns having indexes i and j.
* bool set_space_dimension (dimension_type new_space_dim)

Sets the number of space dimensions to new_space_dim.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Congruence_System can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Congruence_System & zero_dim_empty ()

Returns the system containing only Congruence::zero_dim_false().

Protected Member Functions

* bool satisfies_all_congruences (const Grid_Generator &g) const

Returns t rue if g satisfies all the congruences.

Related Functions

(Note that these are not member functions.)

* bool operator== (const Congruence_System &x, const Congruence_System &y)

* std::ostream & operator<< (std::ostream &s, const Congruence_System &cgs)
Output operator.

¢ void swap (Congruence_System &x, Congruence_System &y)

* void swap (Congruence_System &x, Congruence_System &y)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.22 Parma_Polyhedra_Library::Congruence_System Class Reference 215

10.22.1 Detailed Description

A system of congruences.

An object of the class Congruence_System is a system of congruences, i.e., a multiset of objects of the
class Congruence. When inserting congruences in a system, space dimensions are automatically adjusted
so that all the congruences in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of congruences corresponding to an integer grid in R?:

Congruence_System cgs;
cgs.insert (x %= 0);
cgs.insert (y %= 0);

Note that: the congruence system is created with space dimension zero; the first and second congruence
insertions increase the space dimension to 1 and 2, respectively.

Example 2
By adding to the congruence system of the previous example, the congruence z +y = 1 (mod 2):

cgs.insert ((x +y %= 1) / 2);

we obtain the grid containing just those integral points where the sum of the x and y values is odd.

Example 3

The following code builds a system of congruences corresponding to the grid in Z? containing just the
integral points on the x axis:
Congruence_System cgs;

cgs.insert (x %= 0);
cgs.insert ((y %= 0) / 0);

Note

After inserting a multiset of congruences in a congruence system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent congruence system will be available,
where original congruences may have been reordered, removed (if they are trivial, duplicate or implied
by other congruences), linearly combined, etc.

10.22.2 Constructor & Destructor Documentation

10.22.2.1 Parma_Polyhedra_Library::Congruence_System::Congruence_System (const Constraint & c,
Representation r=default_representation) [inline], [explicit]

If ¢ represents the constraint e; = e, builds the singleton system containing only constraint e; = ey
(mod 0).

Exceptions

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

216 CONTENTS

‘ std::invalid_argument ‘ Thrown if c is not an equality constraint.

10.22.2.2 Parma_Polyhedra_Library::Congruence_System::Congruence_System (const
Congruence_System & cgs) [inline]

Ordinary copy constructor.

Note

The new Congruence_System will have the same Representation as ‘cgs’ so that it’s indistinguishable
from ‘cgs’.

10.22.3 Member Function Documentation

10.22.3.1 void Parma_Polyhedra_Library::Congruence_System::insert (const Congruence & c¢g)
[inline]

Inserts in *this a copy of the congruence cg, increasing the number of space dimensions if needed.

The copy of cg will be strongly normalized after being inserted.

10.22.3.2 void Parma_Polyhedra_Library::Congruence System::insert (Congruence & cg, Recycle_Input
) [inline]

Inserts in *this the congruence cg, stealing its contents and increasing the number of space dimensions
if needed.

cg will be strongly normalized.
10.22.3.3 void Parma_Polyhedra_Library::Congruence_System::insert (const Constraint & ¢)

Inserts in *t his acopy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

The modulo 0 congruence will be strongly normalized after being inserted.

Exceptions

\ std::invalid_argument | Thrown if c is a relational constraint.

10.22.3.4 void Parma_Polyhedra Library::Congruence _System::insert (const Congruence_System & y)

Inserts in *this a copy of the congruences in y, increasing the number of space dimensions if needed.

The inserted copies will be strongly normalized.

10.22.3.5 void Parma_Polyhedra_Library::Congruence_System::add_unit_rows_and_space_dimensions (
dimension_type dims)

Adds dims rows and dims space dimensions to the matrix, initializing the added rows as in the unit
congruence system.

Parameters

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.23 Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Refere2d&

dims ‘ The number of rows and space dimensions to be added: must be strictly positive.

Turns the X ¢ matrix A into the (r 4+ dims) X (¢ + dims) matrix (E‘ f) where B is the dims x dims

01

10) The matrix is expanded avoiding reallocation whenever possible.

unit matrix of the form (

10.22.3.6 void Parma_Polyhedra_Library::Congruence_System::permute_space_dimensions (const
std::vector< Variable > & cycle)

Permutes the space dimensions of the system.

Parameters

cycle | A vector representing a cycle of the permutation according to which the columns must
be rearranged.

The cycle vector represents a cycle of a permutation of space dimensions. For example, the permutation
{z1 — x2,x2 — x3,23 — 21} can be represented by the vector containing x1, x2, x3.

10.22.3.7 bool Parma_Polyhedra_Library::Congruence System::set_space _dimension (dimension_type
new_space_dim)

Sets the number of space dimensions to new_space_dim.

If new_space_dim is lower than the current space dimension, the coefficients referring to the removed
space dimensions are lost.

10.22.4 Friends And Related Function Documentation

10.22.4.1 bool operator== (const Congruence_System & x, const Congruence_System & y)
[related]

10.22.4.2 std::ostream & operator<< (std::ostream & s, const Congruence_System & cgs)
[related]

Output operator.

Writes t rue if cgs is empty. Otherwise, writes on s the congruences of cgs, all in one row and separated
by ll’ ||.

10.22.4.3 void swap (Congruence_System & X, Congruence_System & y) [related]
10.22.4.4 void swap (Congruence_System & X, Congruence_System & y) [related]

The documentation for this class was generated from the following file:
* ppl.hh

10.23 Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 > Class Template Ref-
erence

This class provides the reduction method for the Congruences_Product domain.

#include <ppl.hh>

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

218 CONTENTS

Public Member Functions

* Congruences_Reduction ()

Default constructor.

¢ void product_reduce (D1 &d1, D2 &d2)

The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

* ~Congruences_Reduction ()

Destructor.

10.23.1 Detailed Description
template <typename D1, typename D2>>class Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 >

This class provides the reduction method for the Congruences_Product domain.
The reduction classes are used to instantiate the Partially_Reduced_Product domain.

This class uses the minimized congruences defining each of the components. For each of the congruences, it
checks if the other component intersects none, one or more than one hyperplane defined by the congruence
and adds equalities or emptiness as appropriate; in more detail: Letting the components be d1 and d2, then,
for each congruence cg representing d1:

* if more than one hyperplane defined by cg intersects d2, then d1 and d2 are unchanged;
« if exactly one hyperplane intersects d2, then d1 and d2 are refined with the corresponding equality ;

* otherwise, d1 and d2 are set to empty. Unless d1 and d2 are already empty, the process is repeated
where the roles of d1 and d2 are reversed. If d1 or d2 is empty, then the emptiness is propagated.

10.23.2 Member Function Documentation

10.23.2.1 template<typename D1, typename D2 > void Parma_Polyhedra_Library-
::Congruences_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2

)

The congruences reduction operator for detect emptiness or any equalities implied by each of the con-
gruences defining one of the components and the bounds of the other component. It is assumed that the
components are already constraints reduced.

The minimized congruence system defining the domain element d1 is used to check if d2 intersects none,
one or more than one of the hyperplanes defined by the congruences: if it intersects none, then product
is set empty; if it intersects one, then the equality defining this hyperplane is added to both components;
otherwise, the product is unchanged. In each case, the donor domain must provide a congruence system in
minimal form.

Parameters

dl | A pointset domain element;

d2 | A pointset domain element;

The documentation for this class was generated from the following file:

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.24 Parma_Polyhedra_Library::CO_Tree::const_iterator Class Reference 219

* ppl.hh

10.24 Parma_Polyhedra_Library::CO _Tree::const _iterator Class Reference

A const iterator on the tree elements, ordered by key.

#include <ppl.hh>

Public Member Functions

e const_iterator ()

Constructs an invalid const_iterator.
¢ const_iterator (const CO_Tree &tree)

Constructs an iterator pointing to the first element of the tree.
* const_iterator (const CO_Tree &tree, dimension_type i)

Constructs a const_iterator pointing to the i-th node of the tree.
e const_iterator (const const_iterator &itr)

The copy constructor.
e const_iterator (const iterator &itr)

Converts an iterator into a const_iterator.
* void m_swap (const_iterator &itr)

Swaps itr with xthis.
* const_iterator & operator= (const const_iterator &itr)

Assigns itr to xthis .
* const_iterator & operator= (const iterator &itr)

Assigns 1tr to xthis .
* const_iterator & operator++ ()

Navigates to the next element.
e const_iterator & operator-- ()

Navigates to the previous element.
* const_iterator operator++ (int)

Navigates to the next element.
* const_iterator operator-- (int)

Navigates to the previous element.
« data_type_const_reference operatorx () const

Returns the current element.
 dimension_type index () const

Returns the index of the element pointed to by xthis.
* bool operator== (const const_iterator &x) const

Compares *this with x .
* bool operator!= (const const_iterator &x) const

Compares xthis with x .

10.24.1 Detailed Description

A const iterator on the tree elements, ordered by key.

Iterator increment and decrement operations are O(1) time. These iterators are invalidated by operations
that add or remove elements from the tree.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

220 CONTENTS

10.24.2 Constructor & Destructor Documentation

10.24.2.1 Parma_Polyhedra_Library::CO _Tree::const_iterator::const_iterator () [inline],
[explicit]

Constructs an invalid const_iterator.

This constructor takes O(1) time.

10.24.2.2 Parma_Polyhedra_Library::CO _Tree::const _iterator::const_iterator (const CO_Tree & tree)
[inline], [explicit]

Constructs an iterator pointing to the first element of the tree.

Parameters

| tree | The tree that the new iterator will point to.

This constructor takes O(1) time.

10.24.2.3 Parma_Polyhedra_Library::CO _Tree::const_iterator::const _iterator (const CO_Tree & tree,
dimension_typei) [inline]

Constructs a const_iterator pointing to the i-th node of the tree.

Parameters

tree | The tree that the new iterator will point to.

~.

The index of the element in t ree to which the iterator will point to.

The i-th node must be a node with a value or end().

This constructor takes O(1) time.

10.24.2.4 Parma_Polyhedra_ Library::CO_Tree::const_iterator::const._iterator (const const_iterator & itr)
[inline]

The copy constructor.

Parameters

‘ itr ‘ The iterator that will be copied.

This constructor takes O(1) time.

10.24.2.5 Parma_Polyhedra_Library::CO _Tree::const_iterator::const_iterator (const iterator & itr)
[inline]

Converts an iterator into a const_iterator.

Parameters

\ itr \ The iterator that will be converted into a const_iterator.

This constructor takes O(1) time.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.24 Parma_Polyhedra_Library::CO_Tree::const_iterator Class Reference 221

10.24.3 Member Function Documentation

10.24.3.1 void Parma_Polyhedra_Library::CO_Tree::const_iterator::m_swap (const_iterator & itr)
[inline]

Swaps itr with xthis.

Parameters

‘ itr ‘ The iterator that will be swapped with xthis.

This method takes O(1) time.

10.24.3.2 CO_Tree::const_iterator & Parma_Polyhedra_Library::CO_Tree::const_iterator::operator= (
const const_iterator &itr) [inline]

Assigns itr to xthis .

Parameters

‘ itr ‘ The iterator that will be assigned into xthis.

This method takes O(1) time.

10.24.3.3 CO_Tree::const_iterator & Parma_Polyhedra_Library::CO_Tree::const_iterator::operator= (
constiterator & itr) [inline]

Assigns itr to xthis .

Parameters

‘ itr | The iterator that will be assigned into xthis.

This method takes O(1) time.

10.24.3.4 CO_Tree::const_iterator & Parma_Polyhedra_Library::CO _Tree::const_iterator::operator++ ()
[inline]

Navigates to the next element.

This method takes O(1) time.

10.24.3.5 CO_Tree::const_iterator & Parma_Polyhedra_Library::CO _Tree::const_iterator::operator-- ()
[inline]

Navigates to the previous element.

This method takes O(1) time.

10.24.3.6 CO_Tree::const_iterator Parma_Polyhedra_Library::CO_Tree::const_iterator::operator++ (int
) [inline]

Navigates to the next element.

This method takes O(1) time.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

222 CONTENTS

10.24.3.7 CO_Tree::const_iterator Parma_Polyhedra_Library::CO_Tree::const_iterator::operator-- (int)
[inline]

Navigates to the previous element.

This method takes O(1) time.

10.24.3.8 dimension_type Parma_Polyhedra_Library::CO_Tree::const_iterator::index () const
[inline]

Returns the index of the element pointed to by *xthis.

Returns

the index of the element pointed to by *this.

10.24.3.9 bool Parma_Polyhedra_Library::CO_Tree::const _iterator::operator== (const const_iterator & x)
const [inline]

Compares *this with x .

Parameters
‘ X ‘ The iterator that will be compared with sxthis. ‘

10.24.3.10 bool Parma_Polyhedra_Library::CO_Tree::const_iterator::operator!= (const const_iterator & x
)eonst [inline]

Compares *this with x .

Parameters
‘ x | The iterator that will be compared with xthis.

The documentation for this class was generated from the following file:

* ppl.hh

10.25 Parma_Polyhedra_Library::Linear Expression_Impl< Row >::const iterator Class Ref-
erence

#include <ppl.hh>

Public Member Functions

e virtual const_iterator_interface * clone () const
* virtual void operator++ ()
* virtual void operator-- ()
* virtual reference operatorx () const
Returns the current element.
e virtual Variable variable () const

Returns the variable of the coefficient pointed to by xthis.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.25 Parma_Polyhedra_Library::Linear_Expression_Impl< Row >::const_iterator Class
Reference 223

* virtual bool operator== (const const_iterator_interface &x) const

Compares xthis with x .

10.25.1 Detailed Description
template<typename Row>class Parma_Polyhedra_Library::Linear_Expression_Impl< Row >::const._iterator

An interface for const iterators on the expression (homogeneous) coefficients that are nonzero.

These iterators are invalidated by operations that modify the expression.

10.25.2 Member Function Documentation

10.25.2.1 template<typename Row > Linear_Expression_Interface::const_iterator_interface x
Parma_Polyhedra_Library::Linear_Expression_Impl< Row >::const_iterator::clone () const
[virtual]

Returns a copy of xthis. This returns a pointer to dynamic-allocated memory. The caller has the duty to
free the memory when it’s not needed anymore.

10.25.2.2 template<typename Row > void Parma_Polyhedra_Library::Linear_Expression_Impl< Row
>:const_iterator::operator++ () [virtuall

Navigates to the next nonzero coefficient. Note that this method does *notx* return a reference, to increase
efficiency since it’s virtual.

10.25.2.3 template<typename Row > void Parma_Polyhedra_Library::Linear_Expression_Impl< Row
>::const_iterator::operator--() [virtual]

Navigates to the previous nonzero coefficient. Note that this method does *notx return a reference, to
increase efficiency since it’s virtual.

10.25.2.4 template<typename Row > Variable Parma_Polyhedra_Library::Linear_Expression_Impl< Row
>::const_iterator::variable ()const [virtual]

Returns the variable of the coefficient pointed to by xthis.
Returns

the variable of the coefficient pointed to by *this.

10.25.2.5 template<typename Row > bool Parma_Polyhedra_Library::Linear_Expression_Impl< Row
>::const_iterator::operator==(const const_iterator_interface & x)const [virtual]

Compares *this with x .

Parameters

‘ X ‘ The iterator that will be compared with xthis.

The documentation for this class was generated from the following file:

e ppl.hh

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

224 CONTENTS

10.26 Parma_Polyhedra Library::Linear_Expression::const _iterator Class Reference

#include <ppl.hh>

Public Member Functions

e const_iterator ()

Constructs an invalid const_iterator.
e const_iterator (const const_iterator &itr)

The copy constructor.
* void m_swap (const_iterator &itr)

Swaps itr with xthis.
* const_iterator & operator= (const const_iterator &itr)

Assigns 1tr to xthis .
* const_iterator & operator++ ()

Navigates to the next nonzero coefficient.
* const_iterator & operator-- ()

Navigates to the previous nonzero coefficient.
* reference operatorx () const

Returns the current element.
e Variable variable () const

Returns the variable of the coefficient pointed to by xthis.
* bool operator== (const const_iterator &x) const

Compares xthis with x .
* bool operator!= (const const_iterator &x) const

Compares xthis with x .

Related Functions
(Note that these are not member functions.)

* void swap (Linear_Expression::const_iterator &x, Linear_Expression::const_iterator &y)

Swaps x with y.
* void swap (Linear_Expression::const_iterator &x, Linear_Expression::const_iterator &y)

10.26.1 Detailed Description

A const iterator on the expression (homogeneous) coefficient that are nonzero.

These iterators are invalidated by operations that modify the expression.

10.26.2 Constructor & Destructor Documentation

10.26.2.1 Parma_Polyhedra_Library::Linear_Expression::const_iterator::const_iterator () [inline],
[explicit]

Constructs an invalid const_iterator.

This constructor takes O(1) time.

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.26 Parma_Polyhedra_Library::Linear_Expression::const_iterator Class Reference 225

10.26.2.2 Parma_Polyhedra Library::Linear_Expression::const _iterator::const_iterator (const
const_iterator & ifr) [inline]

The copy constructor.

Parameters

| itr | The iterator that will be copied.

This constructor takes O(1) time.

10.26.3 Member Function Documentation

10.26.3.1 void Parma_Polyhedra_Library::Linear_Expression::const_iterator::m_swap (const_iterator & itr
) [inline]

Swaps itr with xthis.

Parameters

‘ itr ‘ The iterator that will be swapped with xthis.

This method takes O(1) time.

10.26.3.2 Linear_Expression::const_iterator & Parma_Polyhedra_Library::Linear-
_Expression::const_iterator::operator= (const const_iterator & itr)
[inline]

Assigns itr to xthis .

Parameters

‘ itr ‘ The iterator that will be assigned into xthis.

This method takes O(1) time.

10.26.3.3 Linear_Expression::const_iterator & Parma_Polyhedra_Library::Linear_Expression::const_-
iterator::operator++() [inline]

Navigates to the next nonzero coefficient.

This method takes O(n) time for dense expressions, and O(1) time for sparse expressions.

10.26.3.4 Linear_Expression::const_iterator & Parma_Polyhedra_Library::Linear_Expression::const -
iterator::operator-() [inline]

Navigates to the previous nonzero coefficient.

This method takes O(n) time for dense expressions, and O(1) time for sparse expressions.

10.26.3.5 Variable Parma_Polyhedra_Library::Linear_Expression::const_iterator::variable () const
[inline]

Returns the variable of the coefficient pointed to by xthis.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

226 CONTENTS

Returns

the variable of the coefficient pointed to by xthis.

10.26.3.6 bool Parma_Polyhedra_Library::Linear_Expression::const _iterator::operator== (const
const_iterator & x Jconst [inline]

Compares *this with x .

Parameters

| x | The iterator that will be compared with «this.

10.26.3.7 bool Parma_Polyhedra_Library::Linear_Expression::const_iterator::operator!= (const
const_iterator & x Jconst [inline]

Compares *this with x .

Parameters

| x | The iterator that will be compared with «this.

10.26.4 Friends And Related Function Documentation

10.26.4.1 void swap (Linear_Expression::const_iterator & x, Linear_Expression::const_iterator & y
) [related]

Swaps x with y.

10.26.4.2 void swap (Linear_Expression::const_iterator & x, Linear_Expression::const_iterator & y
) [related]

The documentation for this class was generated from the following file:

* ppl.hh

10.27 Parma_Polyhedra Library::Congruence System::const iterator Class Reference

An iterator over a system of congruences.

#include <ppl.hh>

Public Member Functions

e const_iterator ()

Default constructor.
* const_iterator (const const_iterator &y)

Ordinary copy constructor.
* ~const_iterator ()

Destructor.
* const_iterator & operator= (const const_iterator &y)

Assignment operator.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.28 Parma_Polyhedra_Library::MIP_Problem::const_iterator Class Reference 227

* const Congruence & operator () const

Dereference operator.
» const Congruence * operator-> () const

Indirect member selector.
* const_iterator & operator++ ()

Prefix increment operator.
e const_iterator operator++ (int)

Postfix increment operator.
* bool operator== (const const_iterator &y) const

Returns t rue if and only if *t his and y are identical.
* bool operator!= (const const_iterator &y) const

Returns t rue if and only if xt his and y are different.

10.27.1 Detailed Description

An iterator over a system of congruences.

A const_iterator is used to provide read-only access to each congruence contained in an object of Congruence-
_System.

Example

The following code prints the system of congruences defining the grid gr:

const Congruence_System& cgs = gr.congruences () ;
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); 1 != cgs_end; ++1i)
cout << *x1i << endl;

The documentation for this class was generated from the following file:

e ppl.hh

10.28 Parma_Polyhedra_Library::MIP_Problem::const _iterator Class Reference

A read-only iterator on the constraints defining the feasible region.

#include <ppl.hh>

Public Member Functions

* difference_type operator- (const const_iterator &y) const

Iterator difference: computes distances.
* const_iterator & operator++ ()

Prefix increment.
* const_iterator & operator-- ()

Prefix decrement.
* const_iterator operator++ (int)

Postfix increment.
* const_iterator operator-- (int)

Postfix decrement.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

228 CONTENTS

* const_iterator & operator+= (difference_type n)

Moves iterator forward of n positions.
* const_iterator & operator-= (difference_type n)

Moves iterator backward of n positions.
* const_iterator operator+ (difference_type n) const

Returns an iterator n positions forward.
* const_iterator operator- (difference_type n) const

Returns an iterator n positions backward.
* reference operatorx () const

Returns a reference to the "pointed"” object.
e pointer operator-> () const

Returns the address of the "pointed" object.
* bool operator== (const const_iterator &y) const

Compares xthis with y.
* bool operator!= (const const_iterator &y) const

Compares xthis with y.

10.28.1 Detailed Description

A read-only iterator on the constraints defining the feasible region.

10.28.2 Member Function Documentation

10.28.2.1 bool Parma_Polyhedra_Library::MIP_Problem::const_iterator::operator== (const const_iterator
&y)eonst [inline]

Compares xthis withy.

Parameters

| y | The iterator that will be compared with «this.

10.28.2.2 bool Parma_Polyhedra_Library::MIP_Problem::const_iterator::operator!= (const const_iterator
&y)const [inline]

Compares xthis withy.

Parameters

‘ y | The iterator that will be compared with xthis.

The documentation for this class was generated from the following file:

* ppl.hh

10.29 Parma_Polyhedra Library::Grid_Generator_System::const iterator Class Reference

An iterator over a system of grid generators.

#include <ppl.hh>

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.30 Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface Class
Reference 229

Public Member Functions

e const_iterator ()

Default constructor.
* const_iterator (const const_iterator &y)

Ordinary copy constructor.
e ~const_iterator ()

Destructor.
e const_iterator & operator= (const const_iterator &y)

Assignment operator.
* const Grid_Generator & operators () const

Dereference operator.
* const Grid_Generator * operator-> () const

Indirect member selector.
* const_iterator & operator++ ()

Prefix increment operator.
* const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const const_iterator &y) const

Returns true if and only if ¥t his and y are identical.
* bool operator!= (const const_iterator &y) const

Returns t rue if and only if ¥t his and y are different.

10.29.1 Detailed Description

An iterator over a system of grid generators.

A const_iterator is used to provide read-only access to each generator contained in an object of Grid_-
Generator_System.

Example

The following code prints the system of generators of the grid gr:

const Grid_Generator_System& ggs = gr.generators();
(Grid_Generator_System::const_iterator i = ggs.begin(),
ggs_end = ggs.end(); i != ggs_end; ++1i)

cout << *1i << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Grid_Generator_System& ggs = gr.generators();
copy (ggs.begin(), ggs.end(), ostream_iterator<Grid_Generator> (cout, "\n"));

The documentation for this class was generated from the following file:

* ppl.hh

10.30 Parma_Polyhedra_Library::Linear_Expression_Interface::const iterator_interface Class
Reference

#include <ppl.hh>

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

230 CONTENTS

Public Member Functions

e virtual const_iterator_interface * clone () const =0
e virtual void operator++ ()=0

* virtual void operator-- ()=0

* virtual reference operatorx () const =0

Returns the current element.
e virtual Variable variable () const =0

Returns the variable of the coefficient pointed to by xthis.
* virtual bool operator== (const const_iterator_interface &x) const =0

Compares xthis with x .

10.30.1 Detailed Description

An interface for const iterators on the expression (homogeneous) coefficients that are nonzero.

These iterators are invalidated by operations that modify the expression.

10.30.2 Member Function Documentation

10.30.2.1 virtual const_iterator_interfacex Parma_Polyhedra_Library::Linear_-
Expression_Interface::const_iterator_interface::clone () const [pure
virtual]

Returns a copy of xthis. This returns a pointer to dynamic-allocated memory. The caller has the duty to
free the memory when it’s not needed anymore.

10.30.2.2 virtual void Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface-
soperator++() [pure virtual]

Navigates to the next nonzero coefficient. Note that this method does «not« return a reference, to increase
efficiency since it’s virtual.

10.30.2.3 virtual void Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface-
operator-() [pure virtual]

Navigates to the previous nonzero coefficient. Note that this method does snotx return a reference, to
increase efficiency since it’s virtual.

10.30.2.4 virtual Variable Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator_interface-
variable ()const [pure virtual]

Returns the variable of the coefficient pointed to by xthis.

Returns

the variable of the coefficient pointed to by *this.

10.30.2.5 virtual bool Parma_Polyhedra_Library::Linear_Expression_Interface::const_iterator-
_interface::operator== (const const_iterator_interface & x) const [pure
virtuall]

Compares *this with x .

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.31 Parma_Polyhedra_Library::Constant_Floating Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 231

Parameters

‘ X ‘ The iterator that will be compared with sxthis.

The documentation for this class was generated from the following file:

* ppl.hh

10.31 Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval Type,
FP_Format > Class Template Reference

A generic Constant Floating Point Expression.
#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_-
Type, FP_Format >:

Parma_Polyhedra_Library

::Constant_Floating_Point

_Expression< FP_Interval
_Type, FP_Format >

Parma_Polyhedra_Library
:Floating_Point_Expression —
< FP_Interval_Type, FP_Format >

Public Types

* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_Form FP_Linear_Form

Alias for the Linear_Form<FP_Interval_Type> from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Interval_Abstract_Store FP_Interval Abstract_Store

Alias for the Box<FP_Interval_Type> from Floating_Point_Expression.
¢ typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store
Alias for the std::map<dimension_type, FP_Linear_Form> from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::boundary_type boundary_type

Alias for the FP_Interval_Type::boundary_type from Floating_Point_Expression.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

232 CONTENTS

* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
:info_type info_type

Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.

Public Member Functions

¢ bool linearize (const FP_Interval_Abstract_Store &int_store, const FP_Linear_Form_Abstract_Store
&lf_store, FP_Linear_Form &result) const

Linearizes the expression in a given astract store.

* void m_swap (Constant_Floating_Point_Expression &y)

Swaps xthis with y.

Constructors and Destructor

* Constant_Floating_Point_Expression (const boundary_type lower_bound, const boundary_type
upper_bound)

Constructor with two parameters: builds the constant floating point expression from a 1ower._bound
and an upper_bound of its value in the concrete domain.
* Constant_Floating_Point_Expression (const char *str_value)

Builds a constant floating point expression with the value expressed by the string str_value.
* ~Constant_Floating_Point_Expression ()

Destructor.

Related Functions
(Note that these are not member functions.)

¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Constant-
_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Swaps x with y.
¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Constant-
_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Additional Inherited Members
10.31.1 Detailed Description

template<typename FP_Interval _Type, typename FP_Format>class Parma_Polyhedra_Library::Constant_Floating-
_Point_Expression< FP_Interval _Type, FP_Format >

A generic Constant Floating Point Expression.

Template type parameters

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.31 Parma_Polyhedra_Library::Constant_Floating Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 233

» The class template type parameter FP_Interval_Type represents the type of the intervals used
in the abstract domain.

* The class template type parameter FP_Format represents the floating point format used in the
concrete domain.

Linearization of floating-point constant expressions

The linearization of a constant floating point expression results in a linear form consisting of only the
inhomogeneous term [I, u], where [and u are the lower and upper bounds of the constant value given to the
class constructor.

10.31.2 Member Function Documentation

10.31.2.1 template<typename FP_Interval_Type , typename FP_Format > bool Parma_Polyhedra_-
Library::Constant_Floating Point_Expression< FP_Interval_Type, FP_Format >::linearize (
const FP_Interval_Abstract_Store & int_store, const FP_Linear_Form_Abstract_Store &
If_store, FP_Linear_Form & result)const [inline], [virtual]

Linearizes the expression in a given astract store.

Makes result become the linearization of xthis in the given composite abstract store.

Parameters

int_store | The interval abstract store.

If store | The linear form abstract store.

result | The modified linear form.

Returns

t rue if the linearization succeeded, £alse otherwise.

See the class description for an explanation of how result is computed.

Implements Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >.

10.31.3 Friends And Related Function Documentation

10.31.3.1 template<typename FP_Interval_Type , typename FP_Format > void swap (
Constant_Floating Point_Expression< FP_Interval_Type, FP_Format > & x,
Constant_Floating_Point_Expression< FP_Interval Type, FP_Format > & y) [related]

Swaps x with y.

10.31.3.2 template<typename FP_Interval_Type , typename FP_Format > void swap (
Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format > & x,
Constant_Floating_Point_Expression< FP_Interval Type, FP_Format > &y) [related]

The documentation for this class was generated from the following file:

e ppl.hh

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

234 CONTENTS

10.32 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

#include <ppl.hh>

Public Types

e enum Type { EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }

The constraint type.
* typedef Expression_Hide_Last
< Linear_Expression > Expression

Public Member Functions

* Constraint (Representation r=default_representation)

Constructs the 0 <= 0 constraint.
¢ Constraint (const Constraint &c)

Ordinary copy constructor.

* Constraint (const Constraint &c, dimension_type space_dim)
Copy constructor with given size.

* Constraint (const Constraint &c, Representation r)
Copy constructor with given representation.

* Constraint (const Constraint &c, dimension_type space_dim, Representation r)
Copy constructor with given size and representation.

 Constraint (const Congruence &cg, Representation r=default_representation)
Copy-constructs from equality congruence cg.

¢ ~Constraint ()
Destructor.

» Representation representation () const

Returns the current representation of *this.

* void set_representation (Representation r)
Converts xthis to the specified representation.

* Constraint & operator= (const Constraint &c)
Assignment operator.

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing *this.

* void set_space_dimension (dimension_type space_dim)

* void swap_space_dimensions (Variable v1, Variable v2)
Swaps the coefficients of the variables v1 and v2 .

* bool remove_space_dimensions (const Variables_Set &vars)
Removes all the specified dimensions from the constraint.

* void permute_space_dimensions (const std::vector< Variable > &cycle)
Permutes the space dimensions of the constraint.

* void shift_space_dimensions (Variable v, dimension_type n)

* Type type () const
Returns the constraint type of xthis.

* bool is_equality () const

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.32 Parma_Polyhedra_Library::Constraint Class Reference 235

Returns t rue if and only if xt his is an equality constraint.
* bool is_inequality () const

Returns t rue if and only if xt his is an inequality constraint (either strict or non-strict).
* bool is_nonstrict_inequality () const

Returns t rue if and only if xt his is a non-strict inequality constraint.
* bool is_strict_inequality () const

Returns t rue if and only if *xt his is a strict inequality constraint.
¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.
* Coefficient_traits::const_reference inhomogeneous_term () const

Returns the inhomogeneous term of xthis.
* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.
* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.
* bool is_tautological () const

Returns t rue if and only if xt his is a tautology (i.e., an always true constraint).

¢ bool is_inconsistent () const

Returns t rue if and only if xt his is inconsistent (i.e., an always false constraint).
* bool is_equivalent_to (const Constraint &y) const

Returns t rue if and only if xt his and y are equivalent constraints.
* bool is_equal_to (const Constraint &y) const

Returns true if xthis is identical to y.

¢ bool OK () const

Checks if all the invariants are satisfied.
* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.
* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.
* void print () const

Prints xthisto std: :cerrusing operator<<.
¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* void m_swap (Constraint &y)

Swaps xthis with y.
* const Expression & expression () const

Static Public Member Functions

* static dimension_type max_space_dimension ()
Returns the maximum space dimension a Constraint can handle.
e static void initialize ()
Initializes the class.
e static void finalize ()
Finalizes the class.
e static const Constraint & zero_dim_false ()

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

236 CONTENTS

The unsatisfiable (zero-dimension space) constraint 0 = 1.
* static const Constraint & zero_dim_positivity ()

The true (zero-dimension space) constraint 0 < 1, also known as positivity constraint.
* static const Constraint & epsilon_geq_zero ()

Returns the zero-dimension space constraint € > 0.
* static const Constraint & epsilon_leq_one ()

The zero-dimension space constraint € < 1 (used to implement NNC polyhedra).

Static Public Attributes

* static const Representation default_representation = SPARSE

The representation used for new Constraints.

Related Functions
(Note that these are not member functions.)

 Constraint operator< (const Linear_Expression &el, const Linear_Expression &e?2)
Returns the constraint e1 < e2.

 Constraint operator< (Variable v1, Variable v2)
Returns the constraint vl < v2.

* Constraint operator< (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e < n.

 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n < e.

» Constraint operator> (const Linear_Expression &el, const Linear_Expression &e2)
Returns the constraint el > e2.

 Constraint operator> (Variable v1, Variable v2)
Returns the constraint v1 > v2.

* Constraint operator> (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e > n.

* Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n > e.

¢ Constraint operator== (const Linear_Expression &el, const Linear_Expression &e2)
Returns the constraint el = e2.

* Constraint operator== (Variable v1, Variable v2)
Returns the constraint vl = v2.

» Constraint operator== (const Linear_Expression &e, Coefficient_traits::const_reference n)
Returns the constraint e = n.

* Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression &e)
Returns the constraint n = e.

* Constraint operator<= (const Linear_Expression &el, const Linear_Expression &e?2)
Returns the constraint el <= e2.

» Constraint operator<= (Variable v1, Variable v2)
Returns the constraint vl <= v2.

 Constraint operator<= (const Linear_Expression &e, Coefficient_traits::const_reference n)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.32 Parma_Polyhedra_Library::Constraint Class Reference 237

Returns the constraint e <= n.

 Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n <= e.

 Constraint operator>= (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the constraint el >= e2.

* Constraint operator>= (Variable v1, Variable v2)

Returns the constraint vl >= v2.

¢ Constraint operator>= (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e >= n.

* Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n >= e.

e std::ostream & operator<< (std::ostream &s, const Constraint &c)

Output operator.

* std::ostream & operator<< (std::ostream &s, const Constraint::Type &t)

Output operator.

* bool operator== (const Constraint &x, const Constraint &y)

Returns t rue if and only if x is equivalent to y.

* bool operator!= (const Constraint &x, const Constraint &y)

Returns t rue if and only if x is not equivalent to y.
* void swap (Constraint &x, Constraint &y)
* bool operator== (const Constraint &x, const Constraint &y)
* bool operator!= (const Constraint &x, const Constraint &y)
 Constraint operator== (const Linear_Expression &el, const Linear_Expression &e2)
* Constraint operator== (Variable v1, Variable v2)
* Constraint operator>= (const Linear_Expression &el, const Linear_Expression &e?2)
» Constraint operator>= (const Variable v1, const Variable v2)
 Constraint operator> (const Linear_Expression &el, const Linear_Expression &e?2)
* Constraint operator> (const Variable v1, const Variable v2)
» Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression &e)
 Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression &e)
* Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression &e)
 Constraint operator== (const Linear_Expression &e, Coefficient_traits::const_reference n)
 Constraint operator>= (const Linear_Expression &e, Coefficient_traits::const_reference n)
 Constraint operator> (const Linear_Expression &e, Coefficient_traits::const_reference n)
* Constraint operator<= (const Linear_Expression &el, const Linear_Expression &e2)
» Constraint operator<= (const Variable v1, const Variable v2)
 Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression &e)
 Constraint operator<= (const Linear_Expression &e, Coefficient_traits::const_reference n)
 Constraint operator< (const Linear_Expression &el, const Linear_Expression &e2)
» Constraint operator< (const Variable v1, const Variable v2)
 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression &e)
» Constraint operator< (const Linear_Expression &e, Coefficient_traits::const_reference n)

* void swap (Constraint &x, Constraint &y)

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

238 CONTENTS

10.32.1 Detailed Description

A linear equality or inequality.

An object of the class Constraint is either:
* an equality: Z?;OI a;x; +b=0;
* anon-strict inequality: Z?:_Ol a;x; +b>0;or
« astrict inequality: """ a;z; + b > 0;

where n is the dimension of the space, a; is the integer coefficient of variable x; and b is the integer
inhomogeneous term.

How to build a constraint

Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and <=) and strict inequalities (< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variables x, v and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraint 3x 4+ 5y — z = 0, having space dimension 3:

Constraint eq_c(3*x + 5%y - z == 0);

The following code builds the (non-strict) inequality constraint 4z > 2y — 13, having space dimension
2:

Constraint ineq_c (4%x >= 2xy - 13);

The corresponding strict inequality constraint 4z > 2y — 13 is obtained as follows:

Constraint strict_ineg c(4xx > 2xy - 13);

An unsatisfiable constraint on the zero-dimension space R can be specified as follows:

Constraint false_c = Constraint::zero_dim_false
()i

Equivalent, but more involved ways are the following:

Constraint false_cl(Linear_Expression::zero (
) == 1);

Constraint false_c2(Linear_Expression::zero(
) >=1);

Constraint false_c3(Linear_Expression::zero(
) > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimension 3:

Constraint false_c(0xz == 1);

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.32 Parma_Polyhedra_Library::Constraint Class Reference 239

How to inspect a constraint

Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2

The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case x — by + 3z < 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraint x — 5y + 3z > 4).

Constraint cl(x — 5%y + 3%z <= 4);
cout << "Constraint cl: " << cl << endl;
1t (cl.is_equality())
cout << "Constraint cl is not an inequality." << endl;
else {

Linear_Expression e;

(dimension_type i = cl.space_dimension(); i-- > 0;)
e += cl.coefficient (Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c¢2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint cl: -A + 5B — 3xC >= -4
Complement c2: A — 5xB + 3xC > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-

cally equivalent) constraint considered.

10.32.2 Member Typedef Documentation

10.32.2.1 typedef Expression_Hide Last<Linear_Expression> Parma_Polyhedra_Library::-
Constraint::Expression

The type returned by the expression() method, that provides most of the const methods in Linear_Expression.

10.32.3 Member Enumeration Documentation
10.32.3.1 enum Parma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumerator:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.
STRICT _INEQUALITY The constraint is a strict inequality.

10.32.4 Constructor & Destructor Documentation

10.32.4.1 Parma_Polyhedra_Library::Constraint::Constraint (const Constraint& ¢) [inline]

Ordinary copy constructor.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

240 CONTENTS

Note

The new Constraint will have the same representation as ‘c’, not default_representation, so that they
are indistinguishable.

10.32.4.2 Parma_Polyhedra_Library::Constraint::Constraint (const Constraint & ¢, dimension_type
space_dim) [inline]
Copy constructor with given size.

Note

The new Constraint will have the same representation as ‘c’, not default_representation, so that they
are indistinguishable.

10.32.4.3 Parma_Polyhedra_Library::Constraint::Constraint (const Congruence & cg, Representation r
= default_representation) [explicit]

Copy-constructs from equality congruence cg.

Exceptions

‘ std::invalid_argument | Thrown if cqg is a proper congruence.

10.32.5 Member Function Documentation

10.32.5.1 void Parma_Polyhedra_Library::Constraint::set_space_dimension (dimension_type space_dim
) [inline]

Sets the dimension of the vector space enclosing *this to space_dim.

10.32.5.2 bool Parma_Polyhedra_Library::Constraint::remove_space_dimensions (const Variables_Set &
vars) [inline]

Removes all the specified dimensions from the constraint.

The space dimension of the variable with the highest space dimension in vars must be at most the space
dimension of this.

Always returns t rue. The return value is needed for compatibility with the Generator class.

10.32.5.3 void Parma_Polyhedra_Library::Constraint::shift_space_dimensions (Variable v,
dimension_typen) [inline]

Shift by n positions the coefficients of variables, starting from the coefficient of v. This increases the space
dimension by n.

10.32.5.4 Coefficient_traits::const_reference Parma_Polyhedra_Library::Constraint::coefficient (Variable v
)eonst [inline]

Returns the coefficient of v in *this.

Exceptions

‘ std::invalid_argument | thrown if the index of v is greater than or equal to the space dimension of *this.

g The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.32 Parma_Polyhedra_Library::Constraint Class Reference 241

10.32.5.5 bool Parma_Polyhedra_Library::Constraint::is_tautological () const

Returns t rue if and only if *this is a tautology (i.e., an always true constraint).

A tautology can have either one of the following forms:
« an equality: .7 0z, + 0 = 0; or
* anon-strict inequality: Z?;()l Ox; +b >0, where b > 0; or

* astrict inequality: Z?:_Ol O0z; + b > 0, where b > 0.

10.32.5.6 bool Parma_Polyhedra_Library::Constraint::is_inconsistent () const

Returns t rue if and only if ¥t his is inconsistent (i.e., an always false constraint).

An inconsistent constraint can have either one of the following forms:
* an equality: Z?;OI 0x; + b = 0, where b # 0; or
* anon-strict inequality: Z?;OI O0z; + b > 0, where b < 0; or

* a strict inequality: Z?;()l 0x; +b > 0, where b < 0.

10.32.5.7 bool Parma_Polyhedra_Library::Constraint::is_equivalent_to (const Constraint & y) const

Returns t rue if and only if *this and y are equivalent constraints.

Constraints having different space dimensions are not equivalent. Note that constraints having different
types may nonetheless be equivalent, if they both are tautologies or inconsistent.

10.32.5.8 bool Parma_Polyhedra_Library::Constraint::is_equal_to (const Constraint & y) const

Returns t rue if xthis is identical to y.

This is faster than is_equivalent_to(), but it may return ‘false’ even for equivalent constraints.

10.32.5.9 const Constraint::Expression & Parma_Polyhedra_Library::Constraint::expression () const
[inline]

Allows user code to read the constraint’s expression (but note that the return type is not Linear_Expression,

not all operations are allowed).

10.32.6 Friends And Related Function Documentation

10.32.6.1 Constraint operator< (const Linear_Expression & e1, const Linear_Expression & 2)
[related]

Returns the constraint el < e2.
10.32.6.2 Constraint operator< (Variable v1, Variable v2) [related]
Returns the constraint vl < v2.

10.32.6.3 Constraint operator< (const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

Returns the constraint e < n.

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

242 CONTENTS

10.32.6.4 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression & e)
[related]

Returns the constraint n < e.

10.32.6.5 Constraint operator> (const Linear_Expression & e1, const Linear_Expression & 2)
[related]

Returns the constraint el > e2.
10.32.6.6 Constraint operator> (Variable v1, Variable v2) [related]
Returns the constraint vl > v2.

10.32.6.7 Constraint operator> (const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

Returns the constraint e > n.

10.32.6.8 Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression & e)
[related]

Returns the constraint n > e.

10.32.6.9 Constraint operator==(const Linear_Expression & e1, const Linear_Expression & €2)
[related]

Returns the constraint el = e2.
10.32.6.10 Constraint operator==(Variable v1, Variable v2) [related]
Returns the constraint vl = v2.

10.32.6.11 Constraint operator==(const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

Returns the constraint e = n.

10.32.6.12 Constraint operator==(Coefficient_traits::const_reference n, const Linear_Expression & €)
[related]

Returns the constraint n = e.

10.32.6.13 Constraint operator<=(const Linear_Expression & e1, const Linear_Expression & €2)
[related]

Returns the constraint el <=e2.
10.32.6.14 Constraint operator<=(Variable v1, Variable v2) [related]
Returns the constraint vl <= v2.

10.32.6.15 Constraint operator<=(const Linear_Expression & e, Coefficient_traits::const_reference n
) [related]

Returns the constraint e <= n.

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.32 Parma_Polyhedra_Library::Constraint Class Reference 243

10.32.6.16 Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression & e
) [related]

Returns the constraint n <= e.

10.32.6.17 Constraint operator>= (const Linear_Expression & e1, const Linear_Expression & €2)
[related]

Returns the constraint el >=e2.
10.32.6.18 Constraint operator>=(Variable v1, Variable v2) [related]
Returns the constraint vl >= v2.

10.32.6.19 Constraint operator>= (const Linear_Expression & e, Coefficient_traits::const_reference n
) [related]

Returns the constraint e >=n.

10.32.6.20 Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression & e
) [related]

Returns the constraint n >=e.

10.32.6.21 std::ostream & operator<< (std::ostream & s, const Constraint & ¢) [related]
Output operator.

10.32.6.22 std::ostream & operator<< (std::ostream & s, const Constraint::Type &t) [related]
Output operator.

10.32.6.23 bool operator==(const Constraint & x, const Constraint& y) [related]
Returns t rue if and only if x is equivalent to y.

10.32.6.24 bool operator!= (const Constraint & x, const Constraint &y) [related]
Returns t rue if and only if x is not equivalent to y.

10.32.6.25 void swap (Constraint & X, Constraint& y) [related]

10.32.6.26 bool operator== (const Constraint & x, const Constraint&y) [related]
10.32.6.27 bool operator!= (const Constraint & x, const Constraint& y) [related]

10.32.6.28 Constraint operator==(const Linear_Expression & e1, const Linear_Expression & €2)
[related]

10.32.6.29 Constraint operator==(Variable v1, Variable v2) [related]

10.32.6.30 Constraint operator>=(const Linear_Expression & e1, const Linear_Expression & €2)
[related]

10.32.6.31 Constraint operator>=(const Variable v1, const Variable v2) [related]

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

244 CONTENTS

10.32.6.32 Constraint operator> (const Linear_Expression & e, const Linear_Expression & 2)
[related]

10.32.6.33 Constraint operator> (const Variable v1, const Variable v2) [related]

10.32.6.34 Constraint operator==(Coefficient_traits::const_reference n, const Linear_Expression & €)
[related]

10.32.6.35 Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression & e
) [related]

10.32.6.36 Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression & e)
[related]

10.32.6.37 Constraint operator==(const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

10.32.6.38 Constraint operator>=(const Linear_Expression & e, Coefficient_traits::const_reference n
) [related]

10.32.6.39 Constraint operator> (const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

10.32.6.40 Constraint operator<=(const Linear_Expression & e1, const Linear_Expression & €2)
[related]

10.32.6.41 Constraint operator<=(const Variable v1, const Variable v2) [related]

10.32.6.42 Constraint operator<=(Coefficient_traits::const_reference n, const Linear_Expression & e
) [related]

10.32.6.43 Constraint operator<=(const Linear_Expression & e, Coefficient_traits::const_reference n
) [related]

10.32.6.44 Constraint operator< (const Linear_Expression & e1, const Linear_Expression & €2)
[related]

10.32.6.45 Constraint operator< (const Variable v1, const Variable v2) [related]

10.32.6.46 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression & e)
[related]

10.32.6.47 Constraint operator< (const Linear_Expression & e, Coefficient_traits::const_reference n)
[related]

10.32.6.48 void swap (Constraint & X, Constraint & y) [related]

10.32.7 Member Data Documentation

10.32.7.1

const Representation Parma_Polyhedra_Library::Constraint::default_representation = SPARSE
[static]

The representation used for new Constraints.

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.33 Parma_Polyhedra_Library::Constraint_System Class Reference 245

Note

The copy constructor and the copy constructor with specified size use the representation of the original
object, so that it is indistinguishable from the original object.

The documentation for this class was generated from the following file:

e pplLhh

10.33 Parma_Polyhedra_Library::Constraint_System Class Reference

A system of constraints.

#include <ppl.hh>

Public Member Functions

* Constraint_System (Representation r=default_representation)
Default constructor: builds an empty system of constraints.
* Constraint_System (const Constraint &c, Representation r=default_representation)
Builds the singleton system containing only constraint c.
* Constraint_System (const Congruence_System &cgs, Representation r=default_representation)
Builds a system containing copies of any equalities in cgs.
* Constraint_System (const Constraint_System &cs)
Ordinary copy constructor.
* Constraint_System (const Constraint_System &cs, Representation r)
Copy constructor with specified representation.
* ~Constraint_System ()
Destructor.
* Constraint_System & operator= (const Constraint_System &y)
Assignment operator.
» Representation representation () const
Returns the current representation of xthis.
* void set_representation (Representation r)
Converts xthis to the specified representation.
 dimension_type space_dimension () const
Returns the dimension of the vector space enclosing xthis.
* void set_space_dimension (dimension_type space_dim)
Sets the space dimension of the rows in the system to space_dim.
* bool has_equalities () const
Returns t rue if and only if xt his contains one or more equality constraints.
* bool has_strict_inequalities () const
Returns t rue if and only if xt his contains one or more strict inequality constraints.
* void insert (const Constraint &c)
Inserts in xthis a copy of the constraint c, increasing the number of space dimensions if needed.
* bool empty () const
Returns t rue if and only if xt his has no constraints.
¢ void clear ()

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

246 CONTENTS

Removes all the constraints from the constraint system and sets its space dimension to 0.

* const_iterator begin () const

Returns the const_iterator pointing to the first constraint, if xthis is not empty; otherwise, returns the
past-the-end const_iterator.

¢ const_iterator end () const

Returns the past-the-end const_iterator.
¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.
* void print () const
Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthi s.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

 void m_swap (Constraint_System &y)

Swaps xthis with y.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Constraint_System can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Constraint_System & zero_dim_empty ()

Returns the singleton system containing only Constraint::zero_dim_false().

Related Functions

(Note that these are not member functions.)

* std::ostream & operator<< (std::ostream &s, const Constraint_System &cs)
Output operator.

* void swap (Constraint_System &x, Constraint_System &y)

* void swap (Constraint_System &x, Constraint_System &y)

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.33 Parma_Polyhedra_Library::Constraint_System Class Reference 247

10.33.1 Detailed Description

A system of constraints.

An object of the class Constraint_System is a system of constraints, i.e., a multiset of objects of the class
Constraint. When inserting constraints in a system, space dimensions are automatically adjusted so that all
the constraints in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a system of constraints corresponding to a square in R?:

Constraint_System cs;
cs.insert (x >= 0);

cs.insert ()
cs.insert (y >= 0)
cs.insert (y <= 3);

7
i

Note that: the constraint system is created with space dimension zero; the first and third constraint
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding four strict inequalities to the constraint system of the previous example, we can remove just
the four vertices from the square defined above.

+
+

cs.insert
cs.insert
cs.insert
cs.insert

YO
AN AN AV
w w o o

)
)
)
)

Example 3

The following code builds a system of constraints corresponding to a half-strip in R?:

Constraint_System cs;
cs.insert (x >= 0);
cs.insert(x - y <= 0);
cs.insert(x -y + 1 >= 0);

Note

After inserting a multiset of constraints in a constraint system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent constraint system will be available, where
original constraints may have been reordered, removed (if they are trivial, duplicate or implied by other
constraints), linearly combined, etc.

10.33.2 Constructor & Destructor Documentation

10.33.2.1 Parma_Polyhedra_Library::Constraint_System::Constraint_System (const Constraint_System
&cs) [inline]

Ordinary copy constructor.

Note

The copy will have the same representation as ‘cs’, to make it indistinguishable from ‘cs’.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

248 CONTENTS

10.33.3 Friends And Related Function Documentation

10.33.3.1 std::ostream & operator<< (std::ostream & s, const Constraint_System & ¢s)
[related]
Output operator.

Writes t rue if cs is empty. Otherwise, writes on s the constraints of cs, all in one row and separated by

"non
s .

10.33.3.2 void swap (Constraint_System & X, Constraint_System & y) [related]
10.33.3.3 void swap (Constraint_System & X, Constraint_System & y) [related]

The documentation for this class was generated from the following file:

e ppl.hh

10.34 Parma_Polyhedra_Library::Constraint_System_const _iterator Class Reference

An iterator over a system of constraints.

#include <ppl.hh>

Public Member Functions

 Constraint_System_const_iterator ()

Default constructor.

* Constraint_System_const_iterator (const Constraint_System_const_iterator &y)

Ordinary copy constructor.

e ~Constraint_System_const_iterator ()

Destructor.

» Constraint_System_const_iterator & operator= (const Constraint_System_const_iterator &y)

Assignment operator.

* const Constraint & operatorx () const

Dereference operator.

* const Constraint * operator-> () const

Indirect member selector.

 Constraint_System_const_iterator & operator++ ()

Prefix increment operator.

* Constraint_System_const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const Constraint_System_const_iterator &y) const

Returns t rue if and only if xt his and y are identical.

* bool operator!= (const Constraint_System_const_iterator &y) const

Returns t rue if and only if xt his and y are different.

i The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.35 Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Referen@t9

10.34.1 Detailed Description

An iterator over a system of constraints.

A const_iterator is used to provide read-only access to each constraint contained in a Constraint_System
object.
Example

The following code prints the system of constraints defining the polyhedron ph:

const Constraint_System& cs = ph.constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++1i)
cout << x1 << endl;

The documentation for this class was generated from the following file:

e ppl.hh

10.35 Parma_Polyhedra_Library::Constraints Reduction< D1, D2 > Class Template Ref-
erence

This class provides the reduction method for the Constraints_Product domain.

#include <ppl.hh>

Public Member Functions

¢ Constraints_Reduction ()

Default constructor.

* void product_reduce (D1 &d1, D2 &d2)

The constraints reduction operator for sharing constraints between the domains.
¢ ~Constraints_Reduction ()

Destructor.

10.35.1 Detailed Description
template<typename D1, typename D2>>class Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >

This class provides the reduction method for the Constraints_Product domain.

The reduction classes are used to instantiate the Partially_Reduced_Product domain. This class adds the
constraints defining each of the component domains to the other component.

10.35.2 Member Function Documentation

10.35.2.1 template<typename D1, typename D2 > void Parma_Polyhedra_Library-
::Constraints_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2

)

The constraints reduction operator for sharing constraints between the domains.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

250 CONTENTS

The minimized constraint system defining the domain element d1 is added to d2 and the minimized con-
straint system defining d2 is added to d1. In each case, the donor domain must provide a constraint system
in minimal form; this must define a polyhedron in which the donor element is contained. The recipient
domain selects a subset of these constraints that it can add to the recipient element. For example: if the
domain D1 is the Grid domain and D2 the NNC Polyhedron domain, then only the equality constraints are
copied from d1 to d2 and from d2 to d1.

Parameters

dl | A pointset domain element;

d2 | A pointset domain element;

The documentation for this class was generated from the following file:

* ppl.hh

10.36 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference

A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].

#include <ppl.hh>

Public Member Functions

Constructors and Destructor

* Determinate (const PSET &pset)

Constructs a COW-wrapped object corresponding to the pointset pset.
* Determinate (const Constraint_System &cs)

Constructs a COW-wrapped object corresponding to the pointset defined by cs.
* Determinate (const Congruence_System &cgs)

Constructs a COW-wrapped object corresponding to the pointset defined by cgs.
* Determinate (const Determinate &y)

Copy constructor.
e ~Determinate ()

Destructor.

Member Functions that May Modify the Domain Element

* void upper_bound_assign (const Determinate &y)
Assigns to xthis the upper bound of xthis and y.

* void meet_assign (const Determinate &y)
Assigns to xthis the meet of xthis and y.

* void weakening_assign (const Determinate &Yy)
Assigns to xt his the result of weakening xthis with y.

* void concatenate_assign (const Determinate &y)
Assigns to xt his the concatenation of xthis and y, taken in this order.

* PSET & pointset ()
Returns a reference to the embedded element.

¢ void mutate ()

* Determinate & operator= (const Determinate &y)
Assignment operator.

* void m_swap (Determinate &y)
Swaps xthis with y.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.36 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 251

Related Functions

(Note that these are not member functions.)

¢ template<typename PSET >
void swap (Determinate< PSET > &x, Determinate< PSET > &y)
Swaps x with y.
* template<typename PSET >
bool operator== (const Determinate< PSET > &x, const Determinate< PSET > &y)
Returns t rue if and only if x and y are the same COW-wrapped pointset.
¢ template<typename PSET >
bool operator!= (const Determinate<< PSET > &x, const Determinate< PSET > &y)
Returns t rue if and only if x and y are different COW-wrapped pointsets.
* template<typename PSET >
std::ostream & operator<< (std::ostream &, const Determinate<< PSET > &)
Output operator.

¢ template<typename PSET >
std::ostream & operator< < (std::ostream &s, const Determinate<< PSET > &x)

¢ template<typename PSET >
bool operator== (const Determinate< PSET > &x, const Determinate< PSET > &y)

¢ template<typename PSET >
bool operator!= (const Determinate< PSET > &x, const Determinate< PSET > &y)

* template<typename PSET >
void swap (Determinate< PSET > &x, Determinate<< PSET > &y)

Member Functions that Do Not Modify the Domain Element

 const PSET & pointset () const
Returns a const reference to the embedded pointset.
* bool is_top () const
Returns t rue if and only if xt his embeds the universe element PSET.
¢ bool is_bottom () const
Returns t rue if and only if xt his embeds the empty element of PSET.
* bool definitely_entails (const Determinate &y) const
Returns t rue if and only if xt his entails y.
* bool is_definitely_equivalent_to (const Determinate &y) const
Returns t rue if and only if xt his and y are definitely equivalent.
* memory_size_type total_memory_in_bytes () const
Returns a lower bound to the total size in bytes of the memory occupied by xthis.
e memory_size_type external_memory_in_bytes () const
Returns a lower bound to the size in bytes of the memory managed by *xthis.
* bool OK () const
Checks if all the invariants are satisfied.

* static bool has_nontrivial_weakening ()

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

252 CONTENTS

10.36.1 Detailed Description
template<typename PSET>>class Parma_Polyhedra_Library::Determinate< PSET >

A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in
[Bag98].

The implementation uses a copy-on-write optimization, making the class suitable for constructions, like
the finite powerset and ask-and-tell of [Bag98], that are likely to perform many copies.

10.36.2 Member Function Documentation

10.36.2.1 template<typename PSET > bool Parma_Polyhedra_Library::Determinate< PSET
>::has_nontrivial weakening() [inlinel], [static]

Returns t rue if and only if this domain has a nontrivial weakening operator.

10.36.3 Friends And Related Function Documentation

10.36.3.1 template<typename PSET > void swap (Determinate< PSET > & x, Determinate< PSET >
&y) [related]

Swaps x with y.

10.36.3.2 template<typename PSET > std::ostream & operator<< (std::ostream &, const
Determinate< PSET > &) [related]

Output operator.

10.36.3.3 template<typename PSET > std::ostream & operator<< (std::ostream & s, const
Determinate< PSET > & X) [related]

10.36.3.4 template<typename PSET > bool operator==(const Determinate< PSET > & X, const
Determinate< PSET > & y) [related]

10.36.3.5 template<typename PSET > bool operator!= (const Determinate< PSET > & x, const
Determinate< PSET > & y) [related]

10.36.3.6 template<typename PSET > void swap (Determinate< PSET > & x, Determinate< PSET >
&y) [related]

The documentation for this class was generated from the following file:

e pplL.hh
10.37 Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval Type,

FP_Format > Class Template Reference

A generic Difference Floating Point Expression.

#include <ppl.hh>

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.37 Parma_Polyhedra_Library::Difference_Floating Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 253

Inheritance diagram for Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval-
_Type, FP_Format >:

Parma_Polyhedra_Library

::Difference_Floating

_Point_Expression< FP_Interval
_Type, FP_Format >

Parma_Polyhedra_Library
::Floating_Point_Expression e
< FP_Interval_Type, FP_Format >

Public Types

¢ typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_Form FP_Linear_Form
Alias for the Linear_Form<FP_Interval_Type> from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Interval_Abstract_Store FP_Interval_Abstract_Store
Alias for the Box<FP_Interval_Type> from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear Form_ Abstract Store FP_Linear Form_Abstract_Store
Alias for the std::map<dimension_type, FP_Linear_Form> from Floating_Point_Expression.
o typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::boundary_type boundary_type
Alias for the FP_Interval_Type::boundary_type from Floating_Point_Expression.
* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::info_type info_type
Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.

Public Member Functions

¢ bool linearize (const FP_Interval_Abstract_Store &int_store, const FP_Linear_Form_Abstract_Store
&lf_store, FP_Linear_Form &result) const

Linearizes the expression in a given astract store.

* void m_swap (Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)
Swaps xthis with y.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

254 CONTENTS

Constructors and Destructor

* Difference_Floating_Point_Expression (Floating_Point_Expression< FP_Interval_Type, FP_Format
> xconst X, Floating_Point_Expression< FP_Interval_Type, FP_Format > *const y)

Constructor with two parameters: builds the difference floating point expression corresponding to x &
y.
» ~Difference_Floating_Point_Expression ()

Destructor.
Related Functions

(Note that these are not member functions.)

¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Difference-
_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Swaps x with y.
¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Difference-
_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Additional Inherited Members
10.37.1 Detailed Description

template<typename FP_Interval_Type, typename FP_Format>class Parma_Polyhedra_Library::Difference_Floating-
_Point_Expression< FP_Interval Type, FP_Format >

A generic Difference Floating Point Expression.

Template type parameters

* The class template type parameter FP_Interval_Type represents the type of the intervals used
in the abstract domain.

* The class template type parameter FP_Format represents the floating point format used in the
concrete domain.

Linearization of difference floating-point expressions

Leti+ Y., cypipvand i’ + >, oy, v be two linear forms, % and 5% two sound abstract operators on
linear form such that:

(i +> m) B (i’ +> m) =(ie® i)+) (ive? i),

vey veY veV

(i +> m) g#* <z’/ +y m) =(io* i)+ (iyo¥ i)

veY veY veVY

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.37 Parma_Polyhedra_Library::Difference_Floating Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 255

Given an expression e; S e2 and a composite abstract store Hp#, pﬂ] , we construct the interval linear form

ler ©ea) [[p#, pﬂ] on V as follows:

ler0ea) [o%, o | = ter [0, o | B tea [0 o | e (ter) [0, |)P er (le2d [o#, o |) EB#msel-1.1]

where e¢ (1) is the linear form computed by calling method Floating_Point_FExpression::relative-
_error onland mfr is arounding error defined in Floating_Point_Expression::absolute-
_error.

10.37.2 Member Function Documentation

10.37.2.1 template<typename FP_Interval_Type , typename FP_Format > bool Parma_Polyhedra_-
Library::Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format >::linearize (
const FP_Interval_Abstract_Store & int_store, const FP_Linear_Form_Abstract_Store &
If store, FP_Linear_Form & result) const [virtual]

Linearizes the expression in a given astract store.

Makes result become the linearization of xthis in the given composite abstract store.

Parameters
int_store | The interval abstract store.
If _store | The linear form abstract store.
result | The modified linear form.

Returns

true if the linearization succeeded, false otherwise.
Note that all variables occuring in the expressions represented by first_operand and second_-

operand MUST have an associated value in int_store. If this precondition is not met, calling the
method causes an undefined behavior.

See the class description for a detailed explanation of how result is computed.

Implements Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >.

10.37.3 Friends And Related Function Documentation

10.37.3.1 template<typename FP_Interval_Type , typename FP_Format > void swap (
Difference_Floating_Point_Expression< FP_Interval _Type, FP_Format > & x,
Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y) [related]

Swaps x with y.

10.37.3.2 template<typename FP_Interval_Type , typename FP_Format > void swap (
Difference_Floating_Point_Expression< FP_Interval _Type, FP_Format > & x,
Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y) [related]

The documentation for this class was generated from the following file:

e ppl.hh

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

256 CONTENTS

10.38 Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval Type, F-
P_Format > Class Template Reference

A generic Division Floating Point Expression.
#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval_-
Type, FP_Format >:

Parma_Polyhedra_Library

::Division_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library
::Floating_Point_Expression —
< FP_Interval_Type, FP_Format >

Public Types

* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_Form FP_Linear_Form

Alias for the Linear_Form<FP_Interval_Type> from Floating_Point_Expression.

* typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Interval Abstract_Store FP_Interval Abstract_Store

Alias for the Box<FP_Interval_Type> from Floating_Point_Expression.

¢ typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::FP_Linear_Form_Abstract_Store FP_Linear_Form_Abstract_Store

Alias for the std::map<dimension_type, FP_Linear_Form> from Floating_Point_Expression.

e typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::boundary_type boundary_type

Alias for the FP_Interval_Type::boundary_type from Floating_Point_Expression.

¢ typedef
Floating_Point_Expression
< FP_Interval_Type, FP_Format >
::info_type info_type

Alias for the FP_Interval_Type::info_type from Floating_Point_Expression.

-

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.38 Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval_Type,
FP_Format > Class Template Reference 257

Public Member Functions

¢ bool linearize (const FP_Interval_Abstract_Store &int_store, const FP_Linear_Form_Abstract_Store
&lIf_store, FP_Linear_Form &result) const

Linearizes the expression in a given astract store.
* void m_swap (Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)
Swaps xthis with y.

Constructors and Destructor

* Division_Floating_Point_Expression (Floating_Point_Expression< FP_Interval_Type, FP_Format
> xconst num, Floating_Point_Expression< FP_Interval_Type, FP_Format > xconst den)

Constructor with two parameters: builds the division floating point expression corresponding to num @
den.

» ~Division_Floating_Point_Expression ()

Destructor.

Related Functions

(Note that these are not member functions.)

¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Division_-
Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Swaps x with y.
¢ template<typename FP_Interval_Type , typename FP_Format >
void swap (Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > &x, Division_-
Floating_Point_Expression< FP_Interval_Type, FP_Format > &y)

Additional Inherited Members
10.38.1 Detailed Description

template<typename FP_Interval _Type, typename FP_Format>class Parma_Polyhedra_Library::Division_Floating-
_Point_Expression< FP_Interval_Type, FP_Format >

A generic Division Floating Point Expression.

Template type parameters

 The class template type parameter FP_Interval_Type represents the type of the intervals used
in the abstract domain.

* The class template type parameter FP_Format represents the floating point format used in the
concrete domain.

Linearizationd of division floating-point expressions

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

258 CONTENTS

Leti+ >, cyivvand @' + 3y, i,v be two linear forms, B# and ¥ two sound abstract operator on
linear forms such that:

(i +> m) B (z” +> i;v> =(ie® i)+ (ive® i),

veEV veY veVY
<i + z‘w) a# i’ = (io* i)+ (i,o* i) v.
% %

Given an expression e; @ [a, b] and a composite abstract store [[p#, pﬂ] , we construct the interval linear

form (e; @ [a, b]) [[p#,pﬂ] as follows:

lexola,bl) [0 o | = (tes) [o#,oF] 2% 0. 8) 8 (=1 ((ead [o]) 27 0. b]) EF mfel-1.1,

given an expression e; @ e, and a composite abstract store [[p#, pﬂ] , we construct the interval linear form

ler @ ea) [[p#, pﬂ] as follows:

e @ e2) [, 0] = e @1 (tea) [%, 0]) o) [%,]

where e¢ (1) is the linear form computed by calling method Floating_Point_FExpression::relative-
_erroronl,(l)p” is the linear form computed by calling method F1oat ing_Point_Expression-—
::intervalizeon!and p#, and m f¢ is arounding error defined in Float ing_Point_Expression-
::absolute_error.

10.38.2 Member Function Documentation

10.38.2.1 template<typename FP_Interval _Type , typename FP_Format > bool Parma_Polyhedra_-
Library::Division_Floating_Point_Expression< FP_Interval_Type, FP_Format >::linearize (
const FP_Interval_Abstract_Store & int_store, const FP_Linear Form_Abstract_Store &
If store, FP_Linear_Form & result)const [virtual]

Linearizes the expression in a given astract store.

Makes result become the linearization of xthis in the given composite abstract store.

Parameters
int_store | The interval abstract store.
If store | The linear form abstract store.
result | The modified linear form.

Returns

true if the linearization succeeded, £alse otherwise.

Note that all variables occuring in the expressions represented by first_operand and second_-
operand MUST have an associated value in int_store. If this precondition is not met, calling the
method causes an undefined behavior.

See the class description for a detailed explanation of how result is computed.

Implements Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >.

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.39 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference 259

10.38.3 Friends And Related Function Documentation

10.38.3.1 template<typename FP_Interval_Type , typename FP_Format > void swap (
Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > & x,
Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y) [related]

Swaps x with y.

10.38.3.2 template<typename FP_Interval_Type , typename FP_Format > void swap (
Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > & x,
Division_Floating_Point_Expression< FP_Interval_Type, FP_Format > &y) [related]

The documentation for this class was generated from the following file:

e ppl.hh

10.39 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference

This class is temporary and will be removed when template typedefs will be supported in C++.

#include <ppl.hh>

10.39.1 Detailed Description
template<typename D1, typename D2>>class Parma_Polyhedra_Library::Domain_Product< D1, D2 >
This class is temporary and will be removed when template typedefs will be supported in C++.

When template typedefs will be supported in C++, what now is verbosely denoted by Domain_Product<-
Domainl, Domain2>::Direct_Product will simply be denoted by Direct_Product<Domainl, Domain2>.

The documentation for this class was generated from the following file:

e pplL.hh

10.40 Parma_Polyhedra_Library::Implementation::Watchdog::Doubly_Linked_Object Class
Reference

A (base) class for doubly linked objects.
#include <ppl.hh>

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information. g

http://bugseng.com

260 CONTENTS

Inheritance diagram for Parma_Polyhedra_Library::Implementation::Watchdog::Doubly_Linked_Object:

Parma_Polyhedra_Library
::Implementation::Watchdog
::EList< Pending_Element

< typename Traits::T hreshold > >

Parma_Polyhedra_Library Parma_Polyhedra_Library
::Implementation::Watchdog («¢——— ::Implementation::Watchdog
::Doubly_Linked_Object GEList< T >

Parma_Polyhedra_Library
::Implementation::Watchdog
::Pending_Element< T hreshold >

Public Member Functions

* Doubly_Linked_Object ()

Default constructor.

* Doubly_Linked_Object (Doubly_Linked_Object xf, Doubly_Linked_Object xb)
Creates a chain element with forward link £ and backward link b.

* void insert_before (Doubly_Linked_Object &y)

Inserts y before xthis.

* void insert_after (Doubly_Linked_Object &y)

Inserts y after xthis.

* Doubly_Linked_Object * erase ()

Erases xthis from the chain and returns a pointer to the next element.

e ~Doubly_Linked_Object ()

Erases xthis from the chain.

10.40.1 Detailed Description

A (base) class for doubly linked objects.

The documentation for this class was generated from the following file:

* ppl.hh

10.41 Parma_Polyhedra_Library::Implementation::Watchdog::EList< T > Class Template
Reference

A simple kind of embedded list (i.e., a doubly linked objects where the links are embedded in the objects
themselves).

The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.41 Parma_Polyhedra_Library::Implementation::Watchdog::EList< T > Class Template
Reference 261

#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::Implementation:: Watchdog::EList< T >:

Parma_Polyhedra_Library
::Implementation::Watchdog
::Doubly_Linked_Object

Parma_Polyhedra_Library
::Implementation::Watchdog
GEList< T >

Public Types

* typedef EList_Iterator< const T > Const_Iterator

A const iterator to traverse the list.
* typedef EList_Iterator< T > Iterator

A non-const iterator to traverse the list.

Public Member Functions

* EList ()
Constructs an empty list.
e ~EList ()
Destructs the list and all the elements in it.
* void push_front (T &obj)
Pushes ob j to the front of the list.
* void push_back (T &obj)
Pushes ob j to the back of the list.
e [terator insert (Iterator position, T &obj)

Inserts obj just before position and returns an iterator that points to the inserted object.

* [terator erase (Iterator position)

Removes the element pointed to by position, returning an iterator pointing to the next element, if any, or
end(), otherwise.

* bool empty () const
Returns t rue if and only if the list is empty.

e Iterator begin ()

Returns an iterator pointing to the beginning of the list.

4

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

262 CONTENTS

e Iterator end ()

Returns an iterator pointing one past the last element in the list.
* Const_Iterator begin () const

Returns a const iterator pointing to the beginning of the list.
¢ Const_Iterator end () const

Returns a const iterator pointing one past the last element in the list.

bool OK () const

Checks if all the invariants are satisfied.

Additional Inherited Members
10.41.1 Detailed Description
template<typename T>class Parma_Polyhedra_Library::Implementation::Watchdog::EList< T >

A simple kind of embedded list (i.e., a doubly linked objects where the links are embedded in the objects
themselves).

The documentation for this class was generated from the following file:

* ppl.hh

10.42 Parma_Polyhedra_Library::Implementation::Watchdog::EList_lterator< T > Class Tem-
plate Reference

A class providing iterators for embedded lists.

#include <ppl.hh>

Public Member Functions

e EList_Iterator ()

Constructs an iterator pointing to nothing.
EList_Iterator (Doubly_Linked_Object *p)

Constructs an iterator pointing to p.
» EList_Iterator & operator= (Doubly_Linked_Object *p)

Changes xthis so that it points to p.
e T % operator-> ()

Indirect member selector.
e T & operators ()

Dereference operator.
» EList_Iterator & operator++ ()

Preincrement operator.
 EList_Iterator operator++ (int)

Postincrement operator.
* EList_Iterator & operator-- ()

Predecrement operator:
 EList_Iterator operator-- (int)

Postdecrement operator.

740

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.43 Parma_Polyhedra_Library::Floating_Point_Constant Class Reference 263

Friends

* bool operator== (const EList_Iterator &x, const EList_Iterator &y)

Returns t rue if and only if x and y are equal.

* bool operator!= (const EList_Iterator &x, const EList_Iterator &y)

Returns t rue if and only if x and y are different.

10.42.1 Detailed Description
template<typename T>class Parma_Polyhedra_Library::Implementation::Watchdog::EList_lterator< T >

A class providing iterators for embedded lists.

The documentation for this class was generated from the following file:

e ppl.hh

10.43 Parma_Polyhedra_Library::Floating_Point_Constant Class Reference

A floating-point constant concrete expression.

#include <ppl.hh>

10.43.1 Detailed Description

A floating-point constant concrete expression.

The documentation for this class was generated from the following file:
* ppl.hh
10.44 Parma_Polyhedra_Library::Floating_Point_Constant Common< Target > Class Tem-

plate Reference

Base class for floating-point constant concrete expression.

#include <ppl.hh>

10.44.1 Detailed Description
template<typename Target>class Parma_Polyhedra_Library::Floating_Point_Constant_Common< Target >

Base class for floating-point constant concrete expression.

The documentation for this class was generated from the following file:

e ppl.hh

ﬁ

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

264 CONTENTS

10.45 Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval Type, FP_Format
> Class Template Reference

A floating point expression on a given format.
#include <ppl.hh>

Inheritance diagram for Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_-

z! The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

http://bugseng.com

10.45 Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format >

Class Template Reference

265

Format >:

Parma_Polyhedra_Library

::Cast_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library

::Constant_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library
::Difference_Floating

_Point_Expression< FP_lInterval

_Type, FP_Format >

/ _Type, FP_Format >

Parma_Polyhedra_Library
::Floating_Point_Expression

Parma_Polyhedra_Library
:Division_Floating_Point
_Expression< FP_lInterval

< FP_Interval_Type, FP_Format >

Public Types

¢ typedef Linear_Form
< FP_Interval_Type > FP_Linear_Form

Parma_Polyhedra_Library
::Multiplication_Floating
_Point_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library

::Opposite_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

Parma_Polyhedra_Library
::Sum_Floating_Point_Expression
< FP_Interval_Type, FP_Format >

Parma_Polyhedra_Library

:Variable_Floating_Point

_Expression< FP_lInterval
_Type, FP_Format >

The PPL User’s Manual (version 1.0). See http://bugseng. com for more information.

4

http://bugseng.com

266 CONTENTS

Alias for a linear form with template argument FP_Interval_ Type.
¢ typedef Box< FP_Interval_Type > FP_Interval_Abstract_Store

Alias for a map that associates a variable index to an interval.
* typedef std::map
< dimension_type,
FP_Linear_Form > FP_Linear_Form_Abstract_Store

Alias for a map that associates a variable index to a linear form.
* typedef
FP_Interval_Type::boundary_type boundary_type

The floating point format used by the analyzer.
¢ typedef FP_Interval_Type::info_type info_type
The interval policy used by FP_Interval_Type.

Public Member Functions

* virtual ~Floating_Point_Expression ()

Destructor.
e virtual bool linearize (const FP_Interval_Abstract_Store &int_store, const FP_Linear_Form_Abstract-
_Store &If_store, FP_Linear_Form &result) const =0

Linearizes a floating point expression.

Static Public Member Functions

e static bool overflows (const FP_Linear_Form &If)

Verifies if a given linear form overflows.
e static void relative_error (const FP_Linear Form &If, FP_Linear_Form &result)

Computes the relative error of a given linear form.
e static void intervalize (const FP_Linear_Form &If, const FP_Interval_Abstract_Store &store, FP_-
Interval_Type &result)

Makes result become an interval that overapproximates all the possible values of 1f in the interval
abstract store store.

Static Public Attributes
* static FP_Interval_Type absolute_error = compute_absolute_error()
Absolute error.
10.45.1 Detailed Description

template<typename FP_Interval _Type, typename FP_Format>class Parma_Polyhedra_Library::Floating_Point-
_Expression< FP_Interval_Type, FP_Format >

A floating point expression on a given format.

This class represents a concrete floating point expression. This includes constants, floating point variables,
binary and unary arithmetic operators.

Template type parameters

i The PPL User’s Manual (version 1.0). See http://bugseng.com for more information.

http://bugseng.com

10.45 Parma_Polyhedra_Library::Floating Point_Expression< FP_Interval_Type, FP_Format >
Class Template Reference 267

» The class template type parameter FP_Interval_Type represents the type of the intervals used
in the abstract domain. The interval bounds should have a floating point type.

* The class template type parameter FP_Format represents the floating point format used in the
concrete domain. This parameter must be a struct similar to the ones defined in file Float.defs.hh,
even though it is sufficient to define the three fields BASE, MANTISSA_BITS and EXPONENT_-
BIAS.

10.45.2 Member Typedef Documentation

10.45.2.1 template<typename FP_Interval_Type , typename FP_Format > typedef Box<FP_Interval _Type>
Parma_Polyhedra_Library::Floating_Point_Expression< FP_Interval_Type, FP_Format
>1:FP_Interval_Abstract_Store

Alias for a map that associates a variable index to an interval.
Alias for a Box storing lower and upper bounds for floating point variables.

The type a linear form abstract store associating each variable with an interval that correctly approximates
its value.

Reimplemented in Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval_Type,

FP_Format >, Parma_Polyhedra_Library::Multiplication_Floating_Point_Expression< FP_Interval_Type,

FP_Format >, Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type, F-

P_Format >, Parma_Polyhedra_Library::Sum_Floating_Point_Expression< FP_Interval_Type, FP_Format
>, Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, FP_Format >,

Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format >, and

Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format >.

10.45.2.2 template<typename FP_Interval_Type , typename FP_Format > typedef std::map<dimension-
_type, FP_Linear_Form> Parma_Polyhedra_Library::Floating_Point_Expression<
FP_Interval_Type, FP_Format >::FP_Linear_Form_Abstract_Store

Alias for a map that associates a variable index to a linear form.

The type a linear form abstract store associating each variable with a linear form that correctly approximates
its value.

Reimplemented in Parma_Polyhedra_Library::Division_Floating Point_Expression< FP_Interval_Type,

FP_Format >, Parma_Polyhedra_Library::Multiplication_Floating_Point_Expression< FP_Interval_Type,

FP_Format >, Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type, F-

P_Format >, Parma_Polyhedra_Library::Sum_Floating_Point_Expression< FP_Interval_Type, FP_Format
>, Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, FP_Format >,

Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format >, and

Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format >.

10.45.3 Member Function Documentation