Introduction

isl is a thread-safe C library for manipulating sets and relations of integer points bounded by affine constraints. The descriptions of the sets and relations may involve both parameters and existentially quantified variables. All computations are performed in exact integer arithmetic using GMP. The isl library offers functionality that is similar to that offered by the Omega and Omega+ libraries, but the underlying algorithms are in most cases completely different.

The library is by no means complete and some fairly basic functionality is still missing. Still, even in its current form, the library has been successfully used as a backend polyhedral library for the polyhedral scanner CLooG and as part of an equivalence checker of static affine programs. For bug reports, feature requests and questions, visit the the discussion group at http://groups.google.com/group/isl-development.

Backward Incompatible Changes

Changes since isl-0.02

Changes since isl-0.03

Changes since isl-0.04

Changes since isl-0.05

Changes since isl-0.06

Changes since isl-0.07


Installation

The source of isl can be obtained either as a tarball or from the git repository. Both are available from http://freshmeat.net/projects/isl/. The installation process depends on how you obtained the source.

Installation from the git repository

  1. Clone or update the repository

    The first time the source is obtained, you need to clone the repository.

            git clone git://repo.or.cz/isl.git

    To obtain updates, you need to pull in the latest changes

            git pull
  2. Generate configure
            ./autogen.sh

After performing the above steps, continue with the Common installation instructions.

Common installation instructions

  1. Obtain GMP

    Building isl requires GMP, including its headers files. Your distribution may not provide these header files by default and you may need to install a package called gmp-devel or something similar. Alternatively, GMP can be built from source, available from http://gmplib.org/.

  2. Configure

    isl uses the standard autoconf configure script. To run it, just type

            ./configure

    optionally followed by some configure options. A complete list of options can be obtained by running

            ./configure --help

    Below we discuss some of the more common options.

    isl can optionally use piplib, but no piplib functionality is currently used by default. The --with-piplib option can be used to specify which piplib library to use, either an installed version (system), an externally built version (build) or no version (no). The option build is mostly useful in configure scripts of larger projects that bundle both isl and piplib.

    --prefix

    Installation prefix for isl

    --with-gmp-prefix

    Installation prefix for GMP (architecture-independent files).

    --with-gmp-exec-prefix

    Installation prefix for GMP (architecture-dependent files).

    --with-piplib

    Which copy of piplib to use, either no (default), system or build.

    --with-piplib-prefix

    Installation prefix for system piplib (architecture-independent files).

    --with-piplib-exec-prefix

    Installation prefix for system piplib (architecture-dependent files).

    --with-piplib-builddir

    Location where build piplib was built.

  3. Compile
            make
  4. Install (optional)
            make install


Library

Initialization

All manipulations of integer sets and relations occur within the context of an isl_ctx. A given isl_ctx can only be used within a single thread. All arguments of a function are required to have been allocated within the same context. There are currently no functions available for moving an object from one isl_ctx to another isl_ctx. This means that there is currently no way of safely moving an object from one thread to another, unless the whole isl_ctx is moved.

An isl_ctx can be allocated using isl_ctx_alloc and freed using isl_ctx_free. All objects allocated within an isl_ctx should be freed before the isl_ctx itself is freed.

        isl_ctx *isl_ctx_alloc();
        void isl_ctx_free(isl_ctx *ctx);

Integers

All operations on integers, mainly the coefficients of the constraints describing the sets and relations, are performed in exact integer arithmetic using GMP. However, to allow future versions of isl to optionally support fixed integer arithmetic, all calls to GMP are wrapped inside isl specific macros. The basic type is isl_int and the operations below are available on this type. The meanings of these operations are essentially the same as their GMP mpz_ counterparts. As always with GMP types, isl_ints need to be initialized with isl_int_init before they can be used and they need to be released with isl_int_clear after the last use. The user should not assume that an isl_int is represented as a mpz_t, but should instead explicitly convert between mpz_ts and isl_ints using isl_int_set_gmp and isl_int_get_gmp whenever a mpz_t is required.

isl_int_init(i)
isl_int_clear(i)
isl_int_set(r,i)
isl_int_set_si(r,i)
isl_int_set_gmp(r,g)
isl_int_get_gmp(i,g)
isl_int_abs(r,i)
isl_int_neg(r,i)
isl_int_swap(i,j)
isl_int_swap_or_set(i,j)
isl_int_add_ui(r,i,j)
isl_int_sub_ui(r,i,j)
isl_int_add(r,i,j)
isl_int_sub(r,i,j)
isl_int_mul(r,i,j)
isl_int_mul_ui(r,i,j)
isl_int_addmul(r,i,j)
isl_int_submul(r,i,j)
isl_int_gcd(r,i,j)
isl_int_lcm(r,i,j)
isl_int_divexact(r,i,j)
isl_int_cdiv_q(r,i,j)
isl_int_fdiv_q(r,i,j)
isl_int_fdiv_r(r,i,j)
isl_int_fdiv_q_ui(r,i,j)
isl_int_read(r,s)
isl_int_print(out,i,width)
isl_int_sgn(i)
isl_int_cmp(i,j)
isl_int_cmp_si(i,si)
isl_int_eq(i,j)
isl_int_ne(i,j)
isl_int_lt(i,j)
isl_int_le(i,j)
isl_int_gt(i,j)
isl_int_ge(i,j)
isl_int_abs_eq(i,j)
isl_int_abs_ne(i,j)
isl_int_abs_lt(i,j)
isl_int_abs_gt(i,j)
isl_int_abs_ge(i,j)
isl_int_is_zero(i)
isl_int_is_one(i)
isl_int_is_negone(i)
isl_int_is_pos(i)
isl_int_is_neg(i)
isl_int_is_nonpos(i)
isl_int_is_nonneg(i)
isl_int_is_divisible_by(i,j)

Sets and Relations

isl uses six types of objects for representing sets and relations, isl_basic_set, isl_basic_map, isl_set, isl_map, isl_union_set and isl_union_map. isl_basic_set and isl_basic_map represent sets and relations that can be described as a conjunction of affine constraints, while isl_set and isl_map represent unions of isl_basic_sets and isl_basic_maps, respectively. However, all isl_basic_sets or isl_basic_maps in the union need to live in the same space. isl_union_sets and isl_union_maps represent unions of isl_sets or isl_maps in different spaces, where spaces are considered different if they have a different number of dimensions and/or different names (see Spaces). The difference between sets and relations (maps) is that sets have one set of variables, while relations have two sets of variables, input variables and output variables.

Memory Management

Since a high-level operation on sets and/or relations usually involves several substeps and since the user is usually not interested in the intermediate results, most functions that return a new object will also release all the objects passed as arguments. If the user still wants to use one or more of these arguments after the function call, she should pass along a copy of the object rather than the object itself. The user is then responsible for making sure that the original object gets used somewhere else or is explicitly freed.

The arguments and return values of all documented functions are annotated to make clear which arguments are released and which arguments are preserved. In particular, the following annotations are used

__isl_give

__isl_give means that a new object is returned. The user should make sure that the returned pointer is used exactly once as a value for an __isl_take argument. In between, it can be used as a value for as many __isl_keep arguments as the user likes. There is one exception, and that is the case where the pointer returned is NULL. Is this case, the user is free to use it as an __isl_take argument or not.

__isl_take

__isl_take means that the object the argument points to is taken over by the function and may no longer be used by the user as an argument to any other function. The pointer value must be one returned by a function returning an __isl_give pointer. If the user passes in a NULL value, then this will be treated as an error in the sense that the function will not perform its usual operation. However, it will still make sure that all the other __isl_take arguments are released.

__isl_keep

__isl_keep means that the function will only use the object temporarily. After the function has finished, the user can still use it as an argument to other functions. A NULL value will be treated in the same way as a NULL value for an __isl_take argument.

Error Handling

isl supports different ways to react in case a runtime error is triggered. Runtime errors arise, e.g., if a function such as isl_map_intersect is called with two maps that have incompatible spaces. There are three possible ways to react on error: to warn, to continue or to abort.

The default behavior is to warn. In this mode, isl prints a warning, stores the last error in the corresponding isl_ctx and the function in which the error was triggered returns NULL. An error does not corrupt internal state, such that isl can continue to be used. isl also provides functions to read the last error and to reset the memory that stores the last error. The last error is only stored for information purposes. Its presence does not change the behavior of isl. Hence, resetting an error is not required to continue to use isl, but only to observe new errors.

        #include <isl/ctx.h>
        enum isl_error isl_ctx_last_error(isl_ctx *ctx);
        void isl_ctx_reset_error(isl_ctx *ctx);

Another option is to continue on error. This is similar to warn on error mode, except that isl does not print any warning. This allows a program to implement its own error reporting.

The last option is to directly abort the execution of the program from within the isl library. This makes it obviously impossible to recover from an error, but it allows to directly spot the error location. By aborting on error, debuggers break at the location the error occurred and can provide a stack trace. Other tools that automatically provide stack traces on abort or that do not want to continue execution after an error was triggered may also prefer to abort on error.

The on error behavior of isl can be specified by calling isl_options_set_on_error or by setting the command line option --isl-on-error. Valid arguments for the function call are ISL_ON_ERROR_WARN, ISL_ON_ERROR_CONTINUE and ISL_ON_ERROR_ABORT. The choices for the command line option are warn, continue and abort. It is also possible to query the current error mode.

        #include <isl/options.h>
        int isl_options_set_on_error(isl_ctx *ctx, int val);
        int isl_options_get_on_error(isl_ctx *ctx);

Identifiers

Identifiers are used to identify both individual dimensions and tuples of dimensions. They consist of a name and an optional pointer. Identifiers with the same name but different pointer values are considered to be distinct. Identifiers can be constructed, copied, freed, inspected and printed using the following functions.

        #include <isl/id.h>
        __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
                __isl_keep const char *name, void *user);
        __isl_give isl_id *isl_id_copy(isl_id *id);
        void *isl_id_free(__isl_take isl_id *id);
        isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
        void *isl_id_get_user(__isl_keep isl_id *id);
        __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
        __isl_give isl_printer *isl_printer_print_id(
                __isl_take isl_printer *p, __isl_keep isl_id *id);

Note that isl_id_get_name returns a pointer to some internal data structure, so the result can only be used while the corresponding isl_id is alive.

Spaces

Whenever a new set or relation is created from scratch, the space in which it lives needs to be specified using an isl_space.

        #include <isl/space.h>
        __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
                unsigned nparam, unsigned n_in, unsigned n_out);
        __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
                unsigned nparam);
        __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
                unsigned nparam, unsigned dim);
        __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
        void isl_space_free(__isl_take isl_space *space);
        unsigned isl_space_dim(__isl_keep isl_space *space,
                enum isl_dim_type type);

The space used for creating a parameter domain needs to be created using isl_space_params_alloc. For other sets, the space needs to be created using isl_space_set_alloc, while for a relation, the space needs to be created using isl_space_alloc. isl_space_dim can be used to find out the number of dimensions of each type in a space, where type may be isl_dim_param, isl_dim_in (only for relations), isl_dim_out (only for relations), isl_dim_set (only for sets) or isl_dim_all.

To check whether a given space is that of a set or a map or whether it is a parameter space, use these functions:

        #include <isl/space.h>
        int isl_space_is_params(__isl_keep isl_space *space);
        int isl_space_is_set(__isl_keep isl_space *space);

It is often useful to create objects that live in the same space as some other object. This can be accomplished by creating the new objects (see Creating New Sets and Relations or Creating New (Piecewise) Quasipolynomials) based on the space of the original object.

        #include <isl/set.h>
        __isl_give isl_space *isl_basic_set_get_space(
                __isl_keep isl_basic_set *bset);
        __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
        #include <isl/union_set.h>
        __isl_give isl_space *isl_union_set_get_space(
                __isl_keep isl_union_set *uset);
        #include <isl/map.h>
        __isl_give isl_space *isl_basic_map_get_space(
                __isl_keep isl_basic_map *bmap);
        __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
        #include <isl/union_map.h>
        __isl_give isl_space *isl_union_map_get_space(
                __isl_keep isl_union_map *umap);
        #include <isl/constraint.h>
        __isl_give isl_space *isl_constraint_get_space(
                __isl_keep isl_constraint *constraint);
        #include <isl/polynomial.h>
        __isl_give isl_space *isl_qpolynomial_get_domain_space(
                __isl_keep isl_qpolynomial *qp);
        __isl_give isl_space *isl_qpolynomial_get_space(
                __isl_keep isl_qpolynomial *qp);
        __isl_give isl_space *isl_qpolynomial_fold_get_space(
                __isl_keep isl_qpolynomial_fold *fold);
        __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
                __isl_keep isl_pw_qpolynomial *pwqp);
        __isl_give isl_space *isl_pw_qpolynomial_get_space(
                __isl_keep isl_pw_qpolynomial *pwqp);
        __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
                __isl_keep isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
                __isl_keep isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
                __isl_keep isl_union_pw_qpolynomial *upwqp);
        __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
                __isl_keep isl_union_pw_qpolynomial_fold *upwf);
        #include <isl/aff.h>
        __isl_give isl_space *isl_aff_get_domain_space(
                __isl_keep isl_aff *aff);
        __isl_give isl_space *isl_aff_get_space(
                __isl_keep isl_aff *aff);
        __isl_give isl_space *isl_pw_aff_get_domain_space(
                __isl_keep isl_pw_aff *pwaff);
        __isl_give isl_space *isl_pw_aff_get_space(
                __isl_keep isl_pw_aff *pwaff);
        __isl_give isl_space *isl_multi_aff_get_space(
                __isl_keep isl_multi_aff *maff);
        __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
                __isl_keep isl_pw_multi_aff *pma);
        __isl_give isl_space *isl_pw_multi_aff_get_space(
                __isl_keep isl_pw_multi_aff *pma);
        #include <isl/point.h>
        __isl_give isl_space *isl_point_get_space(
                __isl_keep isl_point *pnt);

The identifiers or names of the individual dimensions may be set or read off using the following functions.

        #include <isl/space.h>
        __isl_give isl_space *isl_space_set_dim_id(
                __isl_take isl_space *space,
                enum isl_dim_type type, unsigned pos,
                __isl_take isl_id *id);
        int isl_space_has_dim_id(__isl_keep isl_space *space,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_id *isl_space_get_dim_id(
                __isl_keep isl_space *space,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *space,
                                 enum isl_dim_type type, unsigned pos,
                                 __isl_keep const char *name);
        __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *space,
                                 enum isl_dim_type type, unsigned pos);

Note that isl_space_get_name returns a pointer to some internal data structure, so the result can only be used while the corresponding isl_space is alive. Also note that every function that operates on two sets or relations requires that both arguments have the same parameters. This also means that if one of the arguments has named parameters, then the other needs to have named parameters too and the names need to match. Pairs of isl_set, isl_map, isl_union_set and/or isl_union_map arguments may have different parameters (as long as they are named), in which case the result will have as parameters the union of the parameters of the arguments.

Given the identifier or name of a dimension (typically a parameter), its position can be obtained from the following function.

        #include <isl/space.h>
        int isl_space_find_dim_by_id(__isl_keep isl_space *space,
                enum isl_dim_type type, __isl_keep isl_id *id);
        int isl_space_find_dim_by_name(__isl_keep isl_space *space,
                enum isl_dim_type type, const char *name);

The identifiers or names of entire spaces may be set or read off using the following functions.

        #include <isl/space.h>
        __isl_give isl_space *isl_space_set_tuple_id(
                __isl_take isl_space *space,
                enum isl_dim_type type, __isl_take isl_id *id);
        __isl_give isl_space *isl_space_reset_tuple_id(
                __isl_take isl_space *space, enum isl_dim_type type);
        int isl_space_has_tuple_id(__isl_keep isl_space *space,
                enum isl_dim_type type);
        __isl_give isl_id *isl_space_get_tuple_id(
                __isl_keep isl_space *space, enum isl_dim_type type);
        __isl_give isl_space *isl_space_set_tuple_name(
                __isl_take isl_space *space,
                enum isl_dim_type type, const char *s);
        const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
                enum isl_dim_type type);

The type argument needs to be one of isl_dim_in, isl_dim_out or isl_dim_set. As with isl_space_get_name, the isl_space_get_tuple_name function returns a pointer to some internal data structure. Binary operations require the corresponding spaces of their arguments to have the same name.

Spaces can be nested. In particular, the domain of a set or the domain or range of a relation can be a nested relation. The following functions can be used to construct and deconstruct such nested spaces.

        #include <isl/space.h>
        int isl_space_is_wrapping(__isl_keep isl_space *space);
        __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);

The input to isl_space_is_wrapping and isl_space_unwrap should be the space of a set, while that of isl_space_wrap should be the space of a relation. Conversely, the output of isl_space_unwrap is the space of a relation, while that of isl_space_wrap is the space of a set.

Spaces can be created from other spaces using the following functions.

        __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_params(
                __isl_take isl_space *space);
        __isl_give isl_space *isl_space_set_from_params(
                __isl_take isl_space *space);
        __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
        __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
                __isl_take isl_space *right);
        __isl_give isl_space *isl_space_align_params(
                __isl_take isl_space *space1, __isl_take isl_space *space2)
        __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
                enum isl_dim_type type, unsigned pos, unsigned n);
        __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
                enum isl_dim_type type, unsigned n);
        __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
                enum isl_dim_type type, unsigned first, unsigned n);
        __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
                enum isl_dim_type dst_type, unsigned dst_pos,
                enum isl_dim_type src_type, unsigned src_pos,
                unsigned n);
        __isl_give isl_space *isl_space_map_from_set(
                __isl_take isl_space *space);
        __isl_give isl_space *isl_space_map_from_domain_and_range(
                __isl_take isl_space *domain,
                __isl_take isl_space *range);
        __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);

Note that if dimensions are added or removed from a space, then the name and the internal structure are lost.

Local Spaces

A local space is essentially a space with zero or more existentially quantified variables. The local space of a basic set or relation can be obtained using the following functions.

        #include <isl/set.h>
        __isl_give isl_local_space *isl_basic_set_get_local_space(
                __isl_keep isl_basic_set *bset);
        #include <isl/map.h>
        __isl_give isl_local_space *isl_basic_map_get_local_space(
                __isl_keep isl_basic_map *bmap);

A new local space can be created from a space using

        #include <isl/local_space.h>
        __isl_give isl_local_space *isl_local_space_from_space(
                __isl_take isl_space *space);

They can be inspected, modified, copied and freed using the following functions.

        #include <isl/local_space.h>
        isl_ctx *isl_local_space_get_ctx(
                __isl_keep isl_local_space *ls);
        int isl_local_space_is_set(__isl_keep isl_local_space *ls);
        int isl_local_space_dim(__isl_keep isl_local_space *ls,
                enum isl_dim_type type);
        const char *isl_local_space_get_dim_name(
                __isl_keep isl_local_space *ls,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_local_space *isl_local_space_set_dim_name(
                __isl_take isl_local_space *ls,
                enum isl_dim_type type, unsigned pos, const char *s);
        __isl_give isl_local_space *isl_local_space_set_dim_id(
                __isl_take isl_local_space *ls,
                enum isl_dim_type type, unsigned pos,
                __isl_take isl_id *id);
        __isl_give isl_space *isl_local_space_get_space(
                __isl_keep isl_local_space *ls);
        __isl_give isl_aff *isl_local_space_get_div(
                __isl_keep isl_local_space *ls, int pos);
        __isl_give isl_local_space *isl_local_space_copy(
                __isl_keep isl_local_space *ls);
        void *isl_local_space_free(__isl_take isl_local_space *ls);

Two local spaces can be compared using

        int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
                __isl_keep isl_local_space *ls2);

Local spaces can be created from other local spaces using the following functions.

        __isl_give isl_local_space *isl_local_space_domain(
                __isl_take isl_local_space *ls);
        __isl_give isl_local_space *isl_local_space_range(
                __isl_take isl_local_space *ls);
        __isl_give isl_local_space *isl_local_space_from_domain(
                __isl_take isl_local_space *ls);
        __isl_give isl_local_space *isl_local_space_intersect(
                __isl_take isl_local_space *ls1,
                __isl_take isl_local_space *ls2);
        __isl_give isl_local_space *isl_local_space_add_dims(
                __isl_take isl_local_space *ls,
                enum isl_dim_type type, unsigned n);
        __isl_give isl_local_space *isl_local_space_insert_dims(
                __isl_take isl_local_space *ls,
                enum isl_dim_type type, unsigned first, unsigned n);
        __isl_give isl_local_space *isl_local_space_drop_dims(
                __isl_take isl_local_space *ls,
                enum isl_dim_type type, unsigned first, unsigned n);

Input and Output

isl supports its own input/output format, which is similar to the Omega format, but also supports the PolyLib format in some cases.

isl format

The isl format is similar to that of Omega, but has a different syntax for describing the parameters and allows for the definition of an existentially quantified variable as the integer division of an affine expression. For example, the set of integers i between 0 and n such that i % 10 <= 6 can be described as

        [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
                                i - 10 a <= 6) }

A set or relation can have several disjuncts, separated by the keyword or. Each disjunct is either a conjunction of constraints or a projection (exists) of a conjunction of constraints. The constraints are separated by the keyword and.

PolyLib format

If the represented set is a union, then the first line contains a single number representing the number of disjuncts. Otherwise, a line containing the number 1 is optional.

Each disjunct is represented by a matrix of constraints. The first line contains two numbers representing the number of rows and columns, where the number of rows is equal to the number of constraints and the number of columns is equal to two plus the number of variables. The following lines contain the actual rows of the constraint matrix. In each row, the first column indicates whether the constraint is an equality (0) or inequality (1). The final column corresponds to the constant term.

If the set is parametric, then the coefficients of the parameters appear in the last columns before the constant column. The coefficients of any existentially quantified variables appear between those of the set variables and those of the parameters.

Extended PolyLib format

The extended PolyLib format is nearly identical to the PolyLib format. The only difference is that the line containing the number of rows and columns of a constraint matrix also contains four additional numbers: the number of output dimensions, the number of input dimensions, the number of local dimensions (i.e., the number of existentially quantified variables) and the number of parameters. For sets, the number of ``output'' dimensions is equal to the number of set dimensions, while the number of ``input'' dimensions is zero.

Input

        #include <isl/set.h>
        __isl_give isl_basic_set *isl_basic_set_read_from_file(
                isl_ctx *ctx, FILE *input);
        __isl_give isl_basic_set *isl_basic_set_read_from_str(
                isl_ctx *ctx, const char *str);
        __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
                FILE *input);
        __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
                const char *str);
        #include <isl/map.h>
        __isl_give isl_basic_map *isl_basic_map_read_from_file(
                isl_ctx *ctx, FILE *input);
        __isl_give isl_basic_map *isl_basic_map_read_from_str(
                isl_ctx *ctx, const char *str);
        __isl_give isl_map *isl_map_read_from_file(
                isl_ctx *ctx, FILE *input);
        __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
                const char *str);
        #include <isl/union_set.h>
        __isl_give isl_union_set *isl_union_set_read_from_file(
                isl_ctx *ctx, FILE *input);
        __isl_give isl_union_set *isl_union_set_read_from_str(
                isl_ctx *ctx, const char *str);
        #include <isl/union_map.h>
        __isl_give isl_union_map *isl_union_map_read_from_file(
                isl_ctx *ctx, FILE *input);
        __isl_give isl_union_map *isl_union_map_read_from_str(
                isl_ctx *ctx, const char *str);

The input format is autodetected and may be either the PolyLib format or the isl format.

Output

Before anything can be printed, an isl_printer needs to be created.

        __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
                FILE *file);
        __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
        void isl_printer_free(__isl_take isl_printer *printer);
        __isl_give char *isl_printer_get_str(
                __isl_keep isl_printer *printer);

The behavior of the printer can be modified in various ways

        __isl_give isl_printer *isl_printer_set_output_format(
                __isl_take isl_printer *p, int output_format);
        __isl_give isl_printer *isl_printer_set_indent(
                __isl_take isl_printer *p, int indent);
        __isl_give isl_printer *isl_printer_indent(
                __isl_take isl_printer *p, int indent);
        __isl_give isl_printer *isl_printer_set_prefix(
                __isl_take isl_printer *p, const char *prefix);
        __isl_give isl_printer *isl_printer_set_suffix(
                __isl_take isl_printer *p, const char *suffix);

The output_format may be either ISL_FORMAT_ISL, ISL_FORMAT_OMEGA, ISL_FORMAT_POLYLIB, ISL_FORMAT_EXT_POLYLIB or ISL_FORMAT_LATEX and defaults to ISL_FORMAT_ISL. Each line in the output is indented by indent (set by isl_printer_set_indent) spaces (default: 0), prefixed by prefix and suffixed by suffix. In the PolyLib format output, the coefficients of the existentially quantified variables appear between those of the set variables and those of the parameters. The function isl_printer_indent increases the indentation by the specified amount (which may be negative).

To actually print something, use

        #include <isl/set.h>
        __isl_give isl_printer *isl_printer_print_basic_set(
                __isl_take isl_printer *printer,
                __isl_keep isl_basic_set *bset);
        __isl_give isl_printer *isl_printer_print_set(
                __isl_take isl_printer *printer,
                __isl_keep isl_set *set);
        #include <isl/map.h>
        __isl_give isl_printer *isl_printer_print_basic_map(
                __isl_take isl_printer *printer,
                __isl_keep isl_basic_map *bmap);
        __isl_give isl_printer *isl_printer_print_map(
                __isl_take isl_printer *printer,
                __isl_keep isl_map *map);
        #include <isl/union_set.h>
        __isl_give isl_printer *isl_printer_print_union_set(
                __isl_take isl_printer *p,
                __isl_keep isl_union_set *uset);
        #include <isl/union_map.h>
        __isl_give isl_printer *isl_printer_print_union_map(
                __isl_take isl_printer *p,
                __isl_keep isl_union_map *umap);

When called on a file printer, the following function flushes the file. When called on a string printer, the buffer is cleared.

        __isl_give isl_printer *isl_printer_flush(
                __isl_take isl_printer *p);

Creating New Sets and Relations

isl has functions for creating some standard sets and relations.

A basic set or relation can be converted to a set or relation using the following functions.

        __isl_give isl_set *isl_set_from_basic_set(
                __isl_take isl_basic_set *bset);
        __isl_give isl_map *isl_map_from_basic_map(
                __isl_take isl_basic_map *bmap);

Sets and relations can be converted to union sets and relations using the following functions.

        __isl_give isl_union_map *isl_union_map_from_map(
                __isl_take isl_map *map);
        __isl_give isl_union_set *isl_union_set_from_set(
                __isl_take isl_set *set);

The inverse conversions below can only be used if the input union set or relation is known to contain elements in exactly one space.

        __isl_give isl_set *isl_set_from_union_set(
                __isl_take isl_union_set *uset);
        __isl_give isl_map *isl_map_from_union_map(
                __isl_take isl_union_map *umap);

A zero-dimensional set can be constructed on a given parameter domain using the following function.

        __isl_give isl_set *isl_set_from_params(
                __isl_take isl_set *set);

Sets and relations can be copied and freed again using the following functions.

        __isl_give isl_basic_set *isl_basic_set_copy(
                __isl_keep isl_basic_set *bset);
        __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
        __isl_give isl_union_set *isl_union_set_copy(
                __isl_keep isl_union_set *uset);
        __isl_give isl_basic_map *isl_basic_map_copy(
                __isl_keep isl_basic_map *bmap);
        __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
        __isl_give isl_union_map *isl_union_map_copy(
                __isl_keep isl_union_map *umap);
        void isl_basic_set_free(__isl_take isl_basic_set *bset);
        void isl_set_free(__isl_take isl_set *set);
        void *isl_union_set_free(__isl_take isl_union_set *uset);
        void isl_basic_map_free(__isl_take isl_basic_map *bmap);
        void isl_map_free(__isl_take isl_map *map);
        void *isl_union_map_free(__isl_take isl_union_map *umap);

Other sets and relations can be constructed by starting from a universe set or relation, adding equality and/or inequality constraints and then projecting out the existentially quantified variables, if any. Constraints can be constructed, manipulated and added to (or removed from) (basic) sets and relations using the following functions.

        #include <isl/constraint.h>
        __isl_give isl_constraint *isl_equality_alloc(
                __isl_take isl_local_space *ls);
        __isl_give isl_constraint *isl_inequality_alloc(
                __isl_take isl_local_space *ls);
        __isl_give isl_constraint *isl_constraint_set_constant(
                __isl_take isl_constraint *constraint, isl_int v);
        __isl_give isl_constraint *isl_constraint_set_constant_si(
                __isl_take isl_constraint *constraint, int v);
        __isl_give isl_constraint *isl_constraint_set_coefficient(
                __isl_take isl_constraint *constraint,
                enum isl_dim_type type, int pos, isl_int v);
        __isl_give isl_constraint *isl_constraint_set_coefficient_si(
                __isl_take isl_constraint *constraint,
                enum isl_dim_type type, int pos, int v);
        __isl_give isl_basic_map *isl_basic_map_add_constraint(
                __isl_take isl_basic_map *bmap,
                __isl_take isl_constraint *constraint);
        __isl_give isl_basic_set *isl_basic_set_add_constraint(
                __isl_take isl_basic_set *bset,
                __isl_take isl_constraint *constraint);
        __isl_give isl_map *isl_map_add_constraint(
                __isl_take isl_map *map,
                __isl_take isl_constraint *constraint);
        __isl_give isl_set *isl_set_add_constraint(
                __isl_take isl_set *set,
                __isl_take isl_constraint *constraint);
        __isl_give isl_basic_set *isl_basic_set_drop_constraint(
                __isl_take isl_basic_set *bset,
                __isl_take isl_constraint *constraint);

For example, to create a set containing the even integers between 10 and 42, you would use the following code.

        isl_space *space;
        isl_local_space *ls;
        isl_constraint *c;
        isl_basic_set *bset;
        space = isl_space_set_alloc(ctx, 0, 2);
        bset = isl_basic_set_universe(isl_space_copy(space));
        ls = isl_local_space_from_space(space);
        c = isl_equality_alloc(isl_local_space_copy(ls));
        c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
        c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
        bset = isl_basic_set_add_constraint(bset, c);
        c = isl_inequality_alloc(isl_local_space_copy(ls));
        c = isl_constraint_set_constant_si(c, -10);
        c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
        bset = isl_basic_set_add_constraint(bset, c);
        c = isl_inequality_alloc(ls);
        c = isl_constraint_set_constant_si(c, 42);
        c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
        bset = isl_basic_set_add_constraint(bset, c);
        bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);

Or, alternatively,

        isl_basic_set *bset;
        bset = isl_basic_set_read_from_str(ctx,
                "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");

A basic set or relation can also be constructed from two matrices describing the equalities and the inequalities.

        __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
                __isl_take isl_space *space,
                __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
                enum isl_dim_type c1,
                enum isl_dim_type c2, enum isl_dim_type c3,
                enum isl_dim_type c4);
        __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
                __isl_take isl_space *space,
                __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
                enum isl_dim_type c1,
                enum isl_dim_type c2, enum isl_dim_type c3,
                enum isl_dim_type c4, enum isl_dim_type c5);

The isl_dim_type arguments indicate the order in which different kinds of variables appear in the input matrices and should be a permutation of isl_dim_cst, isl_dim_param, isl_dim_set and isl_dim_div for sets and of isl_dim_cst, isl_dim_param, isl_dim_in, isl_dim_out and isl_dim_div for relations.

A (basic) set or relation can also be constructed from a (piecewise) (multiple) affine expression or a list of affine expressions (See Piecewise Quasi Affine Expressions and Piecewise Multiple Quasi Affine Expressions).

        __isl_give isl_basic_map *isl_basic_map_from_aff(
                __isl_take isl_aff *aff);
        __isl_give isl_set *isl_set_from_pw_aff(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_map *isl_map_from_pw_aff(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_basic_map *isl_basic_map_from_aff_list(
                __isl_take isl_space *domain_space,
                __isl_take isl_aff_list *list);
        __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
                __isl_take isl_multi_aff *maff)
        __isl_give isl_set *isl_set_from_pw_multi_aff(
                __isl_take isl_pw_multi_aff *pma);
        __isl_give isl_map *isl_map_from_pw_multi_aff(
                __isl_take isl_pw_multi_aff *pma);

The domain_dim argument describes the domain of the resulting basic relation. It is required because the list may consist of zero affine expressions.

Inspecting Sets and Relations

Usually, the user should not have to care about the actual constraints of the sets and maps, but should instead apply the abstract operations explained in the following sections. Occasionally, however, it may be required to inspect the individual coefficients of the constraints. This section explains how to do so. In these cases, it may also be useful to have isl compute an explicit representation of the existentially quantified variables.

        __isl_give isl_set *isl_set_compute_divs(
                __isl_take isl_set *set);
        __isl_give isl_map *isl_map_compute_divs(
                __isl_take isl_map *map);
        __isl_give isl_union_set *isl_union_set_compute_divs(
                __isl_take isl_union_set *uset);
        __isl_give isl_union_map *isl_union_map_compute_divs(
                __isl_take isl_union_map *umap);

This explicit representation defines the existentially quantified variables as integer divisions of the other variables, possibly including earlier existentially quantified variables. An explicitly represented existentially quantified variable therefore has a unique value when the values of the other variables are known. If, furthermore, the same existentials, i.e., existentials with the same explicit representations, should appear in the same order in each of the disjuncts of a set or map, then the user should call either of the following functions.

        __isl_give isl_set *isl_set_align_divs(
                __isl_take isl_set *set);
        __isl_give isl_map *isl_map_align_divs(
                __isl_take isl_map *map);

Alternatively, the existentially quantified variables can be removed using the following functions, which compute an overapproximation.

        __isl_give isl_basic_set *isl_basic_set_remove_divs(
                __isl_take isl_basic_set *bset);
        __isl_give isl_basic_map *isl_basic_map_remove_divs(
                __isl_take isl_basic_map *bmap);
        __isl_give isl_set *isl_set_remove_divs(
                __isl_take isl_set *set);
        __isl_give isl_map *isl_map_remove_divs(
                __isl_take isl_map *map);

To iterate over all the sets or maps in a union set or map, use

        int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
                int (*fn)(__isl_take isl_set *set, void *user),
                void *user);
        int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
                int (*fn)(__isl_take isl_map *map, void *user),
                void *user);

The number of sets or maps in a union set or map can be obtained from

        int isl_union_set_n_set(__isl_keep isl_union_set *uset);
        int isl_union_map_n_map(__isl_keep isl_union_map *umap);

To extract the set or map in a given space from a union, use

        __isl_give isl_set *isl_union_set_extract_set(
                __isl_keep isl_union_set *uset,
                __isl_take isl_space *space);
        __isl_give isl_map *isl_union_map_extract_map(
                __isl_keep isl_union_map *umap,
                __isl_take isl_space *space);

To iterate over all the basic sets or maps in a set or map, use

        int isl_set_foreach_basic_set(__isl_keep isl_set *set,
                int (*fn)(__isl_take isl_basic_set *bset, void *user),
                void *user);
        int isl_map_foreach_basic_map(__isl_keep isl_map *map,
                int (*fn)(__isl_take isl_basic_map *bmap, void *user),
                void *user);

The callback function fn should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1.

It should be noted that isl does not guarantee that the basic sets or maps passed to fn are disjoint. If this is required, then the user should call one of the following functions first.

        __isl_give isl_set *isl_set_make_disjoint(
                __isl_take isl_set *set);
        __isl_give isl_map *isl_map_make_disjoint(
                __isl_take isl_map *map);

The number of basic sets in a set can be obtained from

        int isl_set_n_basic_set(__isl_keep isl_set *set);

To iterate over the constraints of a basic set or map, use

        #include <isl/constraint.h>
        int isl_basic_map_foreach_constraint(
                __isl_keep isl_basic_map *bmap,
                int (*fn)(__isl_take isl_constraint *c, void *user),
                void *user);
        void *isl_constraint_free(__isl_take isl_constraint *c);

Again, the callback function fn should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1. The constraint c represents either an equality or an inequality. Use the following function to find out whether a constraint represents an equality. If not, it represents an inequality.

        int isl_constraint_is_equality(
                __isl_keep isl_constraint *constraint);

The coefficients of the constraints can be inspected using the following functions.

        void isl_constraint_get_constant(
                __isl_keep isl_constraint *constraint, isl_int *v);
        void isl_constraint_get_coefficient(
                __isl_keep isl_constraint *constraint,
                enum isl_dim_type type, int pos, isl_int *v);
        int isl_constraint_involves_dims(
                __isl_keep isl_constraint *constraint,
                enum isl_dim_type type, unsigned first, unsigned n);

The explicit representations of the existentially quantified variables can be inspected using the following function. Note that the user is only allowed to use this function if the inspected set or map is the result of a call to isl_set_compute_divs or isl_map_compute_divs. The existentially quantified variable is equal to the floor of the returned affine expression. The affine expression itself can be inspected using the functions in Piecewise Quasi Affine Expressions.

        __isl_give isl_aff *isl_constraint_get_div(
                __isl_keep isl_constraint *constraint, int pos);

To obtain the constraints of a basic set or map in matrix form, use the following functions.

        __isl_give isl_mat *isl_basic_set_equalities_matrix(
                __isl_keep isl_basic_set *bset,
                enum isl_dim_type c1, enum isl_dim_type c2,
                enum isl_dim_type c3, enum isl_dim_type c4);
        __isl_give isl_mat *isl_basic_set_inequalities_matrix(
                __isl_keep isl_basic_set *bset,
                enum isl_dim_type c1, enum isl_dim_type c2,
                enum isl_dim_type c3, enum isl_dim_type c4);
        __isl_give isl_mat *isl_basic_map_equalities_matrix(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type c1,
                enum isl_dim_type c2, enum isl_dim_type c3,
                enum isl_dim_type c4, enum isl_dim_type c5);
        __isl_give isl_mat *isl_basic_map_inequalities_matrix(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type c1,
                enum isl_dim_type c2, enum isl_dim_type c3,
                enum isl_dim_type c4, enum isl_dim_type c5);

The isl_dim_type arguments dictate the order in which different kinds of variables appear in the resulting matrix and should be a permutation of isl_dim_cst, isl_dim_param, isl_dim_in, isl_dim_out and isl_dim_div.

The number of parameters, input, output or set dimensions can be obtained using the following functions.

        unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
                enum isl_dim_type type);
        unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
                enum isl_dim_type type);
        unsigned isl_set_dim(__isl_keep isl_set *set,
                enum isl_dim_type type);
        unsigned isl_map_dim(__isl_keep isl_map *map,
                enum isl_dim_type type);

To check whether the description of a set or relation depends on one or more given dimensions, it is not necessary to iterate over all constraints. Instead the following functions can be used.

        int isl_basic_set_involves_dims(
                __isl_keep isl_basic_set *bset,
                enum isl_dim_type type, unsigned first, unsigned n);
        int isl_set_involves_dims(__isl_keep isl_set *set,
                enum isl_dim_type type, unsigned first, unsigned n);
        int isl_basic_map_involves_dims(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type type, unsigned first, unsigned n);
        int isl_map_involves_dims(__isl_keep isl_map *map,
                enum isl_dim_type type, unsigned first, unsigned n);

Similarly, the following functions can be used to check whether a given dimension is involved in any lower or upper bound.

        int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
                enum isl_dim_type type, unsigned pos);
        int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
                enum isl_dim_type type, unsigned pos);

The identifiers or names of the domain and range spaces of a set or relation can be read off or set using the following functions.

        __isl_give isl_set *isl_set_set_tuple_id(
                __isl_take isl_set *set, __isl_take isl_id *id);
        __isl_give isl_set *isl_set_reset_tuple_id(
                __isl_take isl_set *set);
        int isl_set_has_tuple_id(__isl_keep isl_set *set);
        __isl_give isl_id *isl_set_get_tuple_id(
                __isl_keep isl_set *set);
        __isl_give isl_map *isl_map_set_tuple_id(
                __isl_take isl_map *map, enum isl_dim_type type,
                __isl_take isl_id *id);
        __isl_give isl_map *isl_map_reset_tuple_id(
                __isl_take isl_map *map, enum isl_dim_type type);
        int isl_map_has_tuple_id(__isl_keep isl_map *map,
                enum isl_dim_type type);
        __isl_give isl_id *isl_map_get_tuple_id(
                __isl_keep isl_map *map, enum isl_dim_type type);
        const char *isl_basic_set_get_tuple_name(
                __isl_keep isl_basic_set *bset);
        __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
                __isl_take isl_basic_set *set, const char *s);
        const char *isl_set_get_tuple_name(
                __isl_keep isl_set *set);
        const char *isl_basic_map_get_tuple_name(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type type);
        __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
                __isl_take isl_basic_map *bmap,
                enum isl_dim_type type, const char *s);
        const char *isl_map_get_tuple_name(
                __isl_keep isl_map *map,
                enum isl_dim_type type);

As with isl_space_get_tuple_name, the value returned points to an internal data structure. The identifiers, positions or names of individual dimensions can be read off using the following functions.

        __isl_give isl_set *isl_set_set_dim_id(
                __isl_take isl_set *set, enum isl_dim_type type,
                unsigned pos, __isl_take isl_id *id);
        int isl_set_has_dim_id(__isl_keep isl_set *set,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_id *isl_set_get_dim_id(
                __isl_keep isl_set *set, enum isl_dim_type type,
                unsigned pos);
        int isl_basic_map_has_dim_id(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_map *isl_map_set_dim_id(
                __isl_take isl_map *map, enum isl_dim_type type,
                unsigned pos, __isl_take isl_id *id);
        int isl_map_has_dim_id(__isl_keep isl_map *map,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_id *isl_map_get_dim_id(
                __isl_keep isl_map *map, enum isl_dim_type type,
                unsigned pos);
        int isl_set_find_dim_by_id(__isl_keep isl_set *set,
                enum isl_dim_type type, __isl_keep isl_id *id);
        int isl_map_find_dim_by_id(__isl_keep isl_map *map,
                enum isl_dim_type type, __isl_keep isl_id *id);
        int isl_set_find_dim_by_name(__isl_keep isl_set *set,
                enum isl_dim_type type, const char *name);
        int isl_map_find_dim_by_name(__isl_keep isl_map *map,
                enum isl_dim_type type, const char *name);
        const char *isl_constraint_get_dim_name(
                __isl_keep isl_constraint *constraint,
                enum isl_dim_type type, unsigned pos);
        const char *isl_basic_set_get_dim_name(
                __isl_keep isl_basic_set *bset,
                enum isl_dim_type type, unsigned pos);
        const char *isl_set_get_dim_name(
                __isl_keep isl_set *set,
                enum isl_dim_type type, unsigned pos);
        const char *isl_basic_map_get_dim_name(
                __isl_keep isl_basic_map *bmap,
                enum isl_dim_type type, unsigned pos);
        const char *isl_map_get_dim_name(
                __isl_keep isl_map *map,
                enum isl_dim_type type, unsigned pos);

These functions are mostly useful to obtain the identifiers, positions or names of the parameters. Identifiers of individual dimensions are essentially only useful for printing. They are ignored by all other operations and may not be preserved across those operations.

Properties

Unary Properties

Binary Properties

Unary Operations

Binary Operations

The two arguments of a binary operation not only need to live in the same isl_ctx, they currently also need to have the same (number of) parameters.

Basic Operations

Lexicographic Optimization

Given a (basic) set set (or bset) and a zero-dimensional domain dom, the following functions compute a set that contains the lexicographic minimum or maximum of the elements in set (or bset) for those values of the parameters that satisfy dom. If empty is not NULL, then *empty is assigned a set that contains the parameter values in dom for which set (or bset) has no elements. In other words, the union of the parameter values for which the result is non-empty and of *empty is equal to dom.

        __isl_give isl_set *isl_basic_set_partial_lexmin(
                __isl_take isl_basic_set *bset,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_set *isl_basic_set_partial_lexmax(
                __isl_take isl_basic_set *bset,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_set *isl_set_partial_lexmin(
                __isl_take isl_set *set, __isl_take isl_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_set *isl_set_partial_lexmax(
                __isl_take isl_set *set, __isl_take isl_set *dom,
                __isl_give isl_set **empty);

Given a (basic) set set (or bset), the following functions simply return a set containing the lexicographic minimum or maximum of the elements in set (or bset). In case of union sets, the optimum is computed per space.

        __isl_give isl_set *isl_basic_set_lexmin(
                __isl_take isl_basic_set *bset);
        __isl_give isl_set *isl_basic_set_lexmax(
                __isl_take isl_basic_set *bset);
        __isl_give isl_set *isl_set_lexmin(
                __isl_take isl_set *set);
        __isl_give isl_set *isl_set_lexmax(
                __isl_take isl_set *set);
        __isl_give isl_union_set *isl_union_set_lexmin(
                __isl_take isl_union_set *uset);
        __isl_give isl_union_set *isl_union_set_lexmax(
                __isl_take isl_union_set *uset);

Given a (basic) relation map (or bmap) and a domain dom, the following functions compute a relation that maps each element of dom to the single lexicographic minimum or maximum of the elements that are associated to that same element in map (or bmap). If empty is not NULL, then *empty is assigned a set that contains the elements in dom that do not map to any elements in map (or bmap). In other words, the union of the domain of the result and of *empty is equal to dom.

        __isl_give isl_map *isl_basic_map_partial_lexmax(
                __isl_take isl_basic_map *bmap,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_map *isl_basic_map_partial_lexmin(
                __isl_take isl_basic_map *bmap,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_map *isl_map_partial_lexmax(
                __isl_take isl_map *map, __isl_take isl_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_map *isl_map_partial_lexmin(
                __isl_take isl_map *map, __isl_take isl_set *dom,
                __isl_give isl_set **empty);

Given a (basic) map map (or bmap), the following functions simply return a map mapping each element in the domain of map (or bmap) to the lexicographic minimum or maximum of all elements associated to that element. In case of union relations, the optimum is computed per space.

        __isl_give isl_map *isl_basic_map_lexmin(
                __isl_take isl_basic_map *bmap);
        __isl_give isl_map *isl_basic_map_lexmax(
                __isl_take isl_basic_map *bmap);
        __isl_give isl_map *isl_map_lexmin(
                __isl_take isl_map *map);
        __isl_give isl_map *isl_map_lexmax(
                __isl_take isl_map *map);
        __isl_give isl_union_map *isl_union_map_lexmin(
                __isl_take isl_union_map *umap);
        __isl_give isl_union_map *isl_union_map_lexmax(
                __isl_take isl_union_map *umap);

The following functions return their result in the form of a piecewise multi-affine expression (See Piecewise Multiple Quasi Affine Expressions), but are otherwise equivalent to the corresponding functions returning a basic set or relation.

        __isl_give isl_pw_multi_aff *
        isl_basic_map_lexmin_pw_multi_aff(
                __isl_take isl_basic_map *bmap);
        __isl_give isl_pw_multi_aff *
        isl_basic_set_partial_lexmin_pw_multi_aff(
                __isl_take isl_basic_set *bset,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_pw_multi_aff *
        isl_basic_set_partial_lexmax_pw_multi_aff(
                __isl_take isl_basic_set *bset,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_pw_multi_aff *
        isl_basic_map_partial_lexmin_pw_multi_aff(
                __isl_take isl_basic_map *bmap,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);
        __isl_give isl_pw_multi_aff *
        isl_basic_map_partial_lexmax_pw_multi_aff(
                __isl_take isl_basic_map *bmap,
                __isl_take isl_basic_set *dom,
                __isl_give isl_set **empty);

Lists

Lists are defined over several element types, including isl_aff, isl_pw_aff, isl_basic_set and isl_set. Here we take lists of isl_sets as an example. Lists can be created, copied and freed using the following functions.

        #include <isl/list.h>
        __isl_give isl_set_list *isl_set_list_from_set(
                __isl_take isl_set *el);
        __isl_give isl_set_list *isl_set_list_alloc(
                isl_ctx *ctx, int n);
        __isl_give isl_set_list *isl_set_list_copy(
                __isl_keep isl_set_list *list);
        __isl_give isl_set_list *isl_set_list_add(
                __isl_take isl_set_list *list,
                __isl_take isl_set *el);
        __isl_give isl_set_list *isl_set_list_concat(
                __isl_take isl_set_list *list1,
                __isl_take isl_set_list *list2);
        void *isl_set_list_free(__isl_take isl_set_list *list);

isl_set_list_alloc creates an empty list with a capacity for n elements. isl_set_list_from_set creates a list with a single element.

Lists can be inspected using the following functions.

        #include <isl/list.h>
        isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
        int isl_set_list_n_set(__isl_keep isl_set_list *list);
        __isl_give isl_set *isl_set_list_get_set(
                __isl_keep isl_set_list *list, int index);
        int isl_set_list_foreach(__isl_keep isl_set_list *list,
                int (*fn)(__isl_take isl_set *el, void *user),
                void *user);

Lists can be printed using

        #include <isl/list.h>
        __isl_give isl_printer *isl_printer_print_set_list(
                __isl_take isl_printer *p,
                __isl_keep isl_set_list *list);

Matrices

Matrices can be created, copied and freed using the following functions.

        #include <isl/mat.h>
        __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
                unsigned n_row, unsigned n_col);
        __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
        void isl_mat_free(__isl_take isl_mat *mat);

Note that the elements of a newly created matrix may have arbitrary values. The elements can be changed and inspected using the following functions.

        isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
        int isl_mat_rows(__isl_keep isl_mat *mat);
        int isl_mat_cols(__isl_keep isl_mat *mat);
        int isl_mat_get_element(__isl_keep isl_mat *mat,
                int row, int col, isl_int *v);
        __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
                int row, int col, isl_int v);
        __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
                int row, int col, int v);

isl_mat_get_element will return a negative value if anything went wrong. In that case, the value of *v is undefined.

The following function can be used to compute the (right) inverse of a matrix, i.e., a matrix such that the product of the original and the inverse (in that order) is a multiple of the identity matrix. The input matrix is assumed to be of full row-rank.

        __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);

The following function can be used to compute the (right) kernel (or null space) of a matrix, i.e., a matrix such that the product of the original and the kernel (in that order) is the zero matrix.

        __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);

Piecewise Quasi Affine Expressions

The zero quasi affine expression on a given domain can be created using

        __isl_give isl_aff *isl_aff_zero_on_domain(
                __isl_take isl_local_space *ls);

Note that the space in which the resulting object lives is a map space with the given space as domain and a one-dimensional range.

An empty piecewise quasi affine expression (one with no cells) or a piecewise quasi affine expression with a single cell can be created using the following functions.

        #include <isl/aff.h>
        __isl_give isl_pw_aff *isl_pw_aff_empty(
                __isl_take isl_space *space);
        __isl_give isl_pw_aff *isl_pw_aff_alloc(
                __isl_take isl_set *set, __isl_take isl_aff *aff);
        __isl_give isl_pw_aff *isl_pw_aff_from_aff(
                __isl_take isl_aff *aff);

Quasi affine expressions can be copied and freed using

        #include <isl/aff.h>
        __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
        void *isl_aff_free(__isl_take isl_aff *aff);
        __isl_give isl_pw_aff *isl_pw_aff_copy(
                __isl_keep isl_pw_aff *pwaff);
        void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);

A (rational) bound on a dimension can be extracted from an isl_constraint using the following function. The constraint is required to have a non-zero coefficient for the specified dimension.

        #include <isl/constraint.h>
        __isl_give isl_aff *isl_constraint_get_bound(
                __isl_keep isl_constraint *constraint,
                enum isl_dim_type type, int pos);

The entire affine expression of the constraint can also be extracted using the following function.

        #include <isl/constraint.h>
        __isl_give isl_aff *isl_constraint_get_aff(
                __isl_keep isl_constraint *constraint);

Conversely, an equality constraint equating the affine expression to zero or an inequality constraint enforcing the affine expression to be non-negative, can be constructed using

        __isl_give isl_constraint *isl_equality_from_aff(
                __isl_take isl_aff *aff);
        __isl_give isl_constraint *isl_inequality_from_aff(
                __isl_take isl_aff *aff);

The expression can be inspected using

        #include <isl/aff.h>
        isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
        int isl_aff_dim(__isl_keep isl_aff *aff,
                enum isl_dim_type type);
        __isl_give isl_local_space *isl_aff_get_domain_local_space(
                __isl_keep isl_aff *aff);
        __isl_give isl_local_space *isl_aff_get_local_space(
                __isl_keep isl_aff *aff);
        const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
                enum isl_dim_type type, unsigned pos);
        const char *isl_pw_aff_get_dim_name(
                __isl_keep isl_pw_aff *pa,
                enum isl_dim_type type, unsigned pos);
        int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_id *isl_pw_aff_get_dim_id(
                __isl_keep isl_pw_aff *pa,
                enum isl_dim_type type, unsigned pos);
        int isl_aff_get_constant(__isl_keep isl_aff *aff,
                isl_int *v);
        int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
                enum isl_dim_type type, int pos, isl_int *v);
        int isl_aff_get_denominator(__isl_keep isl_aff *aff,
                isl_int *v);
        __isl_give isl_aff *isl_aff_get_div(
                __isl_keep isl_aff *aff, int pos);
        int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
                int (*fn)(__isl_take isl_set *set,
                          __isl_take isl_aff *aff,
                          void *user), void *user);
        int isl_aff_is_cst(__isl_keep isl_aff *aff);
        int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
        int isl_aff_involves_dims(__isl_keep isl_aff *aff,
                enum isl_dim_type type, unsigned first, unsigned n);
        int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
                enum isl_dim_type type, unsigned first, unsigned n);
        isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
        unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
                enum isl_dim_type type);
        int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);

It can be modified using

        #include <isl/aff.h>
        __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
                __isl_take isl_pw_aff *pwaff,
                enum isl_dim_type type, __isl_take isl_id *id);
        __isl_give isl_aff *isl_aff_set_dim_name(
                __isl_take isl_aff *aff, enum isl_dim_type type,
                unsigned pos, const char *s);
        __isl_give isl_aff *isl_aff_set_dim_id(
                __isl_take isl_aff *aff, enum isl_dim_type type,
                unsigned pos, __isl_take isl_id *id);
        __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
                __isl_take isl_pw_aff *pma,
                enum isl_dim_type type, unsigned pos,
                __isl_take isl_id *id);
        __isl_give isl_aff *isl_aff_set_constant(
                __isl_take isl_aff *aff, isl_int v);
        __isl_give isl_aff *isl_aff_set_constant_si(
                __isl_take isl_aff *aff, int v);
        __isl_give isl_aff *isl_aff_set_coefficient(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, int pos, isl_int v);
        __isl_give isl_aff *isl_aff_set_coefficient_si(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, int pos, int v);
        __isl_give isl_aff *isl_aff_set_denominator(
                __isl_take isl_aff *aff, isl_int v);
        __isl_give isl_aff *isl_aff_add_constant(
                __isl_take isl_aff *aff, isl_int v);
        __isl_give isl_aff *isl_aff_add_constant_si(
                __isl_take isl_aff *aff, int v);
        __isl_give isl_aff *isl_aff_add_coefficient(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, int pos, isl_int v);
        __isl_give isl_aff *isl_aff_add_coefficient_si(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, int pos, int v);
        __isl_give isl_aff *isl_aff_insert_dims(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, unsigned first, unsigned n);
        __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
                __isl_take isl_pw_aff *pwaff,
                enum isl_dim_type type, unsigned first, unsigned n);
        __isl_give isl_aff *isl_aff_add_dims(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, unsigned n);
        __isl_give isl_pw_aff *isl_pw_aff_add_dims(
                __isl_take isl_pw_aff *pwaff,
                enum isl_dim_type type, unsigned n);
        __isl_give isl_aff *isl_aff_drop_dims(
                __isl_take isl_aff *aff,
                enum isl_dim_type type, unsigned first, unsigned n);
        __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
                __isl_take isl_pw_aff *pwaff,
                enum isl_dim_type type, unsigned first, unsigned n);

Note that the set_constant and set_coefficient functions set the numerator of the constant or coefficient, while add_constant and add_coefficient add an integer value to the possibly rational constant or coefficient.

To check whether an affine expressions is obviously zero or obviously equal to some other affine expression, use

        #include <isl/aff.h>
        int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
        int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
                __isl_keep isl_aff *aff2);
        int isl_pw_aff_plain_is_equal(
                __isl_keep isl_pw_aff *pwaff1,
                __isl_keep isl_pw_aff *pwaff2);

Operations include

        #include <isl/aff.h>
        __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
                __isl_take isl_aff *aff2);
        __isl_give isl_pw_aff *isl_pw_aff_add(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_pw_aff *isl_pw_aff_min(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_pw_aff *isl_pw_aff_max(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
                __isl_take isl_aff *aff2);
        __isl_give isl_pw_aff *isl_pw_aff_sub(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
        __isl_give isl_pw_aff *isl_pw_aff_neg(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
        __isl_give isl_pw_aff *isl_pw_aff_ceil(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
        __isl_give isl_pw_aff *isl_pw_aff_floor(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
                isl_int mod);
        __isl_give isl_pw_aff *isl_pw_aff_mod(
                __isl_take isl_pw_aff *pwaff, isl_int mod);
        __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
                isl_int f);
        __isl_give isl_pw_aff *isl_pw_aff_scale(
                __isl_take isl_pw_aff *pwaff, isl_int f);
        __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
                isl_int f);
        __isl_give isl_aff *isl_aff_scale_down_ui(
                __isl_take isl_aff *aff, unsigned f);
        __isl_give isl_pw_aff *isl_pw_aff_scale_down(
                __isl_take isl_pw_aff *pwaff, isl_int f);
        __isl_give isl_pw_aff *isl_pw_aff_list_min(
                __isl_take isl_pw_aff_list *list);
        __isl_give isl_pw_aff *isl_pw_aff_list_max(
                __isl_take isl_pw_aff_list *list);
        __isl_give isl_pw_aff *isl_pw_aff_coalesce(
                __isl_take isl_pw_aff *pwqp);
        __isl_give isl_pw_aff *isl_pw_aff_align_params(
                __isl_take isl_pw_aff *pwaff,
                __isl_take isl_space *model);
        __isl_give isl_aff *isl_aff_gist_params(
                __isl_take isl_aff *aff,
                __isl_take isl_set *context);
        __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
                __isl_take isl_set *context);
        __isl_give isl_pw_aff *isl_pw_aff_gist_params(
                __isl_take isl_pw_aff *pwaff,
                __isl_take isl_set *context);
        __isl_give isl_pw_aff *isl_pw_aff_gist(
                __isl_take isl_pw_aff *pwaff,
                __isl_take isl_set *context);
        __isl_give isl_set *isl_pw_aff_domain(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
                __isl_take isl_pw_aff *pa,
                __isl_take isl_set *set);
        __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
                __isl_take isl_pw_aff *pa,
                __isl_take isl_set *set);
        __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
                __isl_take isl_aff *aff2);
        __isl_give isl_pw_aff *isl_pw_aff_mul(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);

When multiplying two affine expressions, at least one of the two needs to be a constant.

        #include <isl/aff.h>
        __isl_give isl_basic_set *isl_aff_le_basic_set(
                __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
        __isl_give isl_basic_set *isl_aff_ge_basic_set(
                __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
        __isl_give isl_set *isl_pw_aff_eq_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_ne_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_le_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_lt_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_ge_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_gt_set(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_set *isl_pw_aff_list_eq_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);
        __isl_give isl_set *isl_pw_aff_list_ne_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);
        __isl_give isl_set *isl_pw_aff_list_le_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);
        __isl_give isl_set *isl_pw_aff_list_lt_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);
        __isl_give isl_set *isl_pw_aff_list_ge_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);
        __isl_give isl_set *isl_pw_aff_list_gt_set(
                __isl_take isl_pw_aff_list *list1,
                __isl_take isl_pw_aff_list *list2);

The function isl_aff_ge_basic_set returns a basic set containing those elements in the shared space of aff1 and aff2 where aff1 is greater than or equal to aff2. The function isl_aff_ge_set returns a set containing those elements in the shared domain of pwaff1 and pwaff2 where pwaff1 is greater than or equal to pwaff2. The functions operating on isl_pw_aff_list apply the corresponding isl_pw_aff function to each pair of elements in the two lists.

        #include <isl/aff.h>
        __isl_give isl_set *isl_pw_aff_nonneg_set(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_set *isl_pw_aff_zero_set(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_set *isl_pw_aff_non_zero_set(
                __isl_take isl_pw_aff *pwaff);

The function isl_pw_aff_nonneg_set returns a set containing those elements in the domain of pwaff where pwaff is non-negative.

        #include <isl/aff.h>
        __isl_give isl_pw_aff *isl_pw_aff_cond(
                __isl_take isl_set *cond,
                __isl_take isl_pw_aff *pwaff_true,
                __isl_take isl_pw_aff *pwaff_false);

The function isl_pw_aff_cond performs a conditional operator and returns an expression that is equal to pwaff_true for elements in cond and equal to pwaff_false for elements not in cond.

        #include <isl/aff.h>
        __isl_give isl_pw_aff *isl_pw_aff_union_min(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_pw_aff *isl_pw_aff_union_max(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);
        __isl_give isl_pw_aff *isl_pw_aff_union_add(
                __isl_take isl_pw_aff *pwaff1,
                __isl_take isl_pw_aff *pwaff2);

The function isl_pw_aff_union_max computes a piecewise quasi-affine expression with a domain that is the union of those of pwaff1 and pwaff2 and such that on each cell, the quasi-affine expression is the maximum of those of pwaff1 and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given cell, then the associated expression is the defined one.

An expression can be read from input using

        #include <isl/aff.h>
        __isl_give isl_aff *isl_aff_read_from_str(
                isl_ctx *ctx, const char *str);
        __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
                isl_ctx *ctx, const char *str);

An expression can be printed using

        #include <isl/aff.h>
        __isl_give isl_printer *isl_printer_print_aff(
                __isl_take isl_printer *p, __isl_keep isl_aff *aff);
        __isl_give isl_printer *isl_printer_print_pw_aff(
                __isl_take isl_printer *p,
                __isl_keep isl_pw_aff *pwaff);

Piecewise Multiple Quasi Affine Expressions

An isl_multi_aff object represents a sequence of zero or more affine expressions, all defined on the same domain space.

An isl_multi_aff can be constructed from a isl_aff_list using the following function.

        #include <isl/aff.h>
        __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
                __isl_take isl_space *space,
                __isl_take isl_aff_list *list);

An empty piecewise multiple quasi affine expression (one with no cells) or a piecewise multiple quasi affine expression with a single cell can be created using the following functions.

        #include <isl/aff.h>
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
                __isl_take isl_space *space);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
                __isl_take isl_set *set,
                __isl_take isl_multi_aff *maff);

A piecewise multiple quasi affine expression can also be initialized from an isl_set or isl_map, provided the isl_set is a singleton and the isl_map is single-valued.

        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
                __isl_take isl_set *set);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
                __isl_take isl_map *map);

Multiple quasi affine expressions can be copied and freed using

        #include <isl/aff.h>
        __isl_give isl_multi_aff *isl_multi_aff_copy(
                __isl_keep isl_multi_aff *maff);
        void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
                __isl_keep isl_pw_multi_aff *pma);
        void *isl_pw_multi_aff_free(
                __isl_take isl_pw_multi_aff *pma);

The expression can be inspected using

        #include <isl/aff.h>
        isl_ctx *isl_multi_aff_get_ctx(
                __isl_keep isl_multi_aff *maff);
        isl_ctx *isl_pw_multi_aff_get_ctx(
                __isl_keep isl_pw_multi_aff *pma);
        unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
                enum isl_dim_type type);
        unsigned isl_pw_multi_aff_dim(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type);
        __isl_give isl_aff *isl_multi_aff_get_aff(
                __isl_keep isl_multi_aff *multi, int pos);
        __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
                __isl_keep isl_pw_multi_aff *pma, int pos);
        const char *isl_pw_multi_aff_get_dim_name(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type, unsigned pos);
        const char *isl_multi_aff_get_tuple_name(
                __isl_keep isl_multi_aff *multi,
                enum isl_dim_type type);
        const char *isl_pw_multi_aff_get_tuple_name(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type);
        int isl_pw_multi_aff_has_tuple_id(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type);
        __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
                __isl_keep isl_pw_multi_aff *pma,
                enum isl_dim_type type);
        int isl_pw_multi_aff_foreach_piece(
                __isl_keep isl_pw_multi_aff *pma,
                int (*fn)(__isl_take isl_set *set,
                            __isl_take isl_multi_aff *maff,
                            void *user), void *user);

It can be modified using

        #include <isl/aff.h>
        __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
                __isl_take isl_multi_aff *maff,
                enum isl_dim_type type, unsigned pos, const char *s);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
                __isl_take isl_pw_multi_aff *pma,
                enum isl_dim_type type, __isl_take isl_id *id);

To check whether two multiple affine expressions are obviously equal to each other, use

        int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
                __isl_keep isl_multi_aff *maff2);
        int isl_pw_multi_aff_plain_is_equal(
                __isl_keep isl_pw_multi_aff *pma1,
                __isl_keep isl_pw_multi_aff *pma2);

Operations include

        #include <isl/aff.h>
        __isl_give isl_multi_aff *isl_multi_aff_add(
                __isl_take isl_multi_aff *maff1,
                __isl_take isl_multi_aff *maff2);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
                __isl_take isl_pw_multi_aff *pma1,
                __isl_take isl_pw_multi_aff *pma2);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
                __isl_take isl_pw_multi_aff *pma1,
                __isl_take isl_pw_multi_aff *pma2);
        __isl_give isl_multi_aff *isl_multi_aff_scale(
                __isl_take isl_multi_aff *maff,
                isl_int f);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
                __isl_take isl_pw_multi_aff *pma,
                __isl_take isl_set *set);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
                __isl_take isl_pw_multi_aff *pma,
                __isl_take isl_set *set);
        __isl_give isl_multi_aff *isl_multi_aff_lift(
                __isl_take isl_multi_aff *maff,
                __isl_give isl_local_space **ls);
        __isl_give isl_multi_aff *isl_multi_aff_gist_params(
                __isl_take isl_multi_aff *maff,
                __isl_take isl_set *context);
        __isl_give isl_multi_aff *isl_multi_aff_gist(
                __isl_take isl_multi_aff *maff,
                __isl_take isl_set *context);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
                __isl_take isl_pw_multi_aff *pma,
                __isl_take isl_set *set);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
                __isl_take isl_pw_multi_aff *pma,
                __isl_take isl_set *set);

If the ls argument of isl_multi_aff_lift is not NULL, then it is assigned the local space that lies at the basis of the lifting applied.

An expression can be read from input using

        #include <isl/aff.h>
        __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
                isl_ctx *ctx, const char *str);
        __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
                isl_ctx *ctx, const char *str);

An expression can be printed using

        #include <isl/aff.h>
        __isl_give isl_printer *isl_printer_print_multi_aff(
                __isl_take isl_printer *p,
                __isl_keep isl_multi_aff *maff);
        __isl_give isl_printer *isl_printer_print_pw_multi_aff(
                __isl_take isl_printer *p,
                __isl_keep isl_pw_multi_aff *pma);

Points

Points are elements of a set. They can be used to construct simple sets (boxes) or they can be used to represent the individual elements of a set. The zero point (the origin) can be created using

        __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);

The coordinates of a point can be inspected, set and changed using

        int isl_point_get_coordinate(__isl_keep isl_point *pnt,
                enum isl_dim_type type, int pos, isl_int *v);
        __isl_give isl_point *isl_point_set_coordinate(
                __isl_take isl_point *pnt,
                enum isl_dim_type type, int pos, isl_int v);
        __isl_give isl_point *isl_point_add_ui(
                __isl_take isl_point *pnt,
                enum isl_dim_type type, int pos, unsigned val);
        __isl_give isl_point *isl_point_sub_ui(
                __isl_take isl_point *pnt,
                enum isl_dim_type type, int pos, unsigned val);

Other properties can be obtained using

        isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);

Points can be copied or freed using

        __isl_give isl_point *isl_point_copy(
                __isl_keep isl_point *pnt);
        void isl_point_free(__isl_take isl_point *pnt);

A singleton set can be created from a point using

        __isl_give isl_basic_set *isl_basic_set_from_point(
                __isl_take isl_point *pnt);
        __isl_give isl_set *isl_set_from_point(
                __isl_take isl_point *pnt);

and a box can be created from two opposite extremal points using

        __isl_give isl_basic_set *isl_basic_set_box_from_points(
                __isl_take isl_point *pnt1,
                __isl_take isl_point *pnt2);
        __isl_give isl_set *isl_set_box_from_points(
                __isl_take isl_point *pnt1,
                __isl_take isl_point *pnt2);

All elements of a bounded (union) set can be enumerated using the following functions.

        int isl_set_foreach_point(__isl_keep isl_set *set,
                int (*fn)(__isl_take isl_point *pnt, void *user),
                void *user);
        int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
                int (*fn)(__isl_take isl_point *pnt, void *user),
                void *user);

The function fn is called for each integer point in set with as second argument the last argument of the isl_set_foreach_point call. The function fn should return 0 on success and -1 on failure. In the latter case, isl_set_foreach_point will stop enumerating and return -1 as well. If the enumeration is performed successfully and to completion, then isl_set_foreach_point returns 0.

To obtain a single point of a (basic) set, use

        __isl_give isl_point *isl_basic_set_sample_point(
                __isl_take isl_basic_set *bset);
        __isl_give isl_point *isl_set_sample_point(
                __isl_take isl_set *set);

If set does not contain any (integer) points, then the resulting point will be ``void'', a property that can be tested using

        int isl_point_is_void(__isl_keep isl_point *pnt);

Piecewise Quasipolynomials

A piecewise quasipolynomial is a particular kind of function that maps a parametric point to a rational value. More specifically, a quasipolynomial is a polynomial expression in greatest integer parts of affine expressions of parameters and variables. A piecewise quasipolynomial is a subdivision of a given parametric domain into disjoint cells with a quasipolynomial associated to each cell. The value of the piecewise quasipolynomial at a given point is the value of the quasipolynomial associated to the cell that contains the point. Outside of the union of cells, the value is assumed to be zero. For example, the piecewise quasipolynomial

        [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }

maps x to 1 + n - x for values of x between 0 and n. A given piecewise quasipolynomial has a fixed domain dimension. Union piecewise quasipolynomials are used to contain piecewise quasipolynomials defined over different domains. Piecewise quasipolynomials are mainly used by the barvinok library for representing the number of elements in a parametric set or map. For example, the piecewise quasipolynomial above represents the number of points in the map

        [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }

Input and Output

Piecewise quasipolynomials can be read from input using

        __isl_give isl_union_pw_qpolynomial *
        isl_union_pw_qpolynomial_read_from_str(
                isl_ctx *ctx, const char *str);

Quasipolynomials and piecewise quasipolynomials can be printed using the following functions.

        __isl_give isl_printer *isl_printer_print_qpolynomial(
                __isl_take isl_printer *p,
                __isl_keep isl_qpolynomial *qp);
        __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
                __isl_take isl_printer *p,
                __isl_keep isl_pw_qpolynomial *pwqp);
        __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
                __isl_take isl_printer *p,
                __isl_keep isl_union_pw_qpolynomial *upwqp);

The output format of the printer needs to be set to either ISL_FORMAT_ISL or ISL_FORMAT_C. For isl_printer_print_union_pw_qpolynomial, only ISL_FORMAT_ISL is supported. In case of printing in ISL_FORMAT_C, the user may want to set the names of all dimensions

        __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
                __isl_take isl_qpolynomial *qp,
                enum isl_dim_type type, unsigned pos,
                const char *s);
        __isl_give isl_pw_qpolynomial *
        isl_pw_qpolynomial_set_dim_name(
                __isl_take isl_pw_qpolynomial *pwqp,
                enum isl_dim_type type, unsigned pos,
                const char *s);

Creating New (Piecewise) Quasipolynomials

Some simple quasipolynomials can be created using the following functions. More complicated quasipolynomials can be created by applying operations such as addition and multiplication on the resulting quasipolynomials

        __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
                __isl_take isl_space *domain);
        __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
                __isl_take isl_space *domain);
        __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
                __isl_take isl_space *domain);
        __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
                __isl_take isl_space *domain);
        __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
                __isl_take isl_space *domain);
        __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
                __isl_take isl_space *domain,
                const isl_int n, const isl_int d);
        __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
                __isl_take isl_space *domain,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
                __isl_take isl_aff *aff);

Note that the space in which a quasipolynomial lives is a map space with a one-dimensional range. The domain argument in some of the functions above corresponds to the domain of this map space.

The zero piecewise quasipolynomial or a piecewise quasipolynomial with a single cell can be created using the following functions. Multiple of these single cell piecewise quasipolynomials can be combined to create more complicated piecewise quasipolynomials.

        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
                __isl_take isl_space *space);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
                __isl_take isl_set *set,
                __isl_take isl_qpolynomial *qp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
                __isl_take isl_qpolynomial *qp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
                __isl_take isl_pw_aff *pwaff);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
                __isl_take isl_space *space);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
                __isl_take isl_pw_qpolynomial *pwqp);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
                __isl_take isl_union_pw_qpolynomial *upwqp,
                __isl_take isl_pw_qpolynomial *pwqp);

Quasipolynomials can be copied and freed again using the following functions.

        __isl_give isl_qpolynomial *isl_qpolynomial_copy(
                __isl_keep isl_qpolynomial *qp);
        void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
                __isl_keep isl_pw_qpolynomial *pwqp);
        void *isl_pw_qpolynomial_free(
                __isl_take isl_pw_qpolynomial *pwqp);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
                __isl_keep isl_union_pw_qpolynomial *upwqp);
        void isl_union_pw_qpolynomial_free(
                __isl_take isl_union_pw_qpolynomial *upwqp);

Inspecting (Piecewise) Quasipolynomials

To iterate over all piecewise quasipolynomials in a union piecewise quasipolynomial, use the following function

        int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
                __isl_keep isl_union_pw_qpolynomial *upwqp,
                int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
                void *user);

To extract the piecewise quasipolynomial in a given space from a union, use

        __isl_give isl_pw_qpolynomial *
        isl_union_pw_qpolynomial_extract_pw_qpolynomial(
                __isl_keep isl_union_pw_qpolynomial *upwqp,
                __isl_take isl_space *space);

To iterate over the cells in a piecewise quasipolynomial, use either of the following two functions

        int isl_pw_qpolynomial_foreach_piece(
                __isl_keep isl_pw_qpolynomial *pwqp,
                int (*fn)(__isl_take isl_set *set,
                          __isl_take isl_qpolynomial *qp,
                          void *user), void *user);
        int isl_pw_qpolynomial_foreach_lifted_piece(
                __isl_keep isl_pw_qpolynomial *pwqp,
                int (*fn)(__isl_take isl_set *set,
                          __isl_take isl_qpolynomial *qp,
                          void *user), void *user);

As usual, the function fn should return 0 on success and -1 on failure. The difference between isl_pw_qpolynomial_foreach_piece and isl_pw_qpolynomial_foreach_lifted_piece is that isl_pw_qpolynomial_foreach_lifted_piece will first compute unique representations for all existentially quantified variables and then turn these existentially quantified variables into extra set variables, adapting the associated quasipolynomial accordingly. This means that the set passed to fn will not have any existentially quantified variables, but that the dimensions of the sets may be different for different invocations of fn.

To iterate over all terms in a quasipolynomial, use

        int isl_qpolynomial_foreach_term(
                __isl_keep isl_qpolynomial *qp,
                int (*fn)(__isl_take isl_term *term,
                          void *user), void *user);

The terms themselves can be inspected and freed using these functions

        unsigned isl_term_dim(__isl_keep isl_term *term,
                enum isl_dim_type type);
        void isl_term_get_num(__isl_keep isl_term *term,
                isl_int *n);
        void isl_term_get_den(__isl_keep isl_term *term,
                isl_int *d);
        int isl_term_get_exp(__isl_keep isl_term *term,
                enum isl_dim_type type, unsigned pos);
        __isl_give isl_aff *isl_term_get_div(
                __isl_keep isl_term *term, unsigned pos);
        void isl_term_free(__isl_take isl_term *term);

Each term is a product of parameters, set variables and integer divisions. The function isl_term_get_exp returns the exponent of a given dimensions in the given term. The isl_ints in the arguments of isl_term_get_num and isl_term_get_den need to have been initialized using isl_int_init before calling these functions.

Properties of (Piecewise) Quasipolynomials

To check whether a quasipolynomial is actually a constant, use the following function.

        int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
                isl_int *n, isl_int *d);

If qp is a constant and if n and d are not NULL then the numerator and denominator of the constant are returned in *n and *d, respectively.

To check whether two union piecewise quasipolynomials are obviously equal, use

        int isl_union_pw_qpolynomial_plain_is_equal(
                __isl_keep isl_union_pw_qpolynomial *upwqp1,
                __isl_keep isl_union_pw_qpolynomial *upwqp2);

Operations on (Piecewise) Quasipolynomials

        __isl_give isl_qpolynomial *isl_qpolynomial_scale(
                __isl_take isl_qpolynomial *qp, isl_int v);
        __isl_give isl_qpolynomial *isl_qpolynomial_neg(
                __isl_take isl_qpolynomial *qp);
        __isl_give isl_qpolynomial *isl_qpolynomial_add(
                __isl_take isl_qpolynomial *qp1,
                __isl_take isl_qpolynomial *qp2);
        __isl_give isl_qpolynomial *isl_qpolynomial_sub(
                __isl_take isl_qpolynomial *qp1,
                __isl_take isl_qpolynomial *qp2);
        __isl_give isl_qpolynomial *isl_qpolynomial_mul(
                __isl_take isl_qpolynomial *qp1,
                __isl_take isl_qpolynomial *qp2);
        __isl_give isl_qpolynomial *isl_qpolynomial_pow(
                __isl_take isl_qpolynomial *qp, unsigned exponent);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
                __isl_take isl_pw_qpolynomial *pwqp1,
                __isl_take isl_pw_qpolynomial *pwqp2);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
                __isl_take isl_pw_qpolynomial *pwqp1,
                __isl_take isl_pw_qpolynomial *pwqp2);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
                __isl_take isl_pw_qpolynomial *pwqp1,
                __isl_take isl_pw_qpolynomial *pwqp2);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
                __isl_take isl_pw_qpolynomial *pwqp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
                __isl_take isl_pw_qpolynomial *pwqp1,
                __isl_take isl_pw_qpolynomial *pwqp2);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
                __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
                __isl_take isl_union_pw_qpolynomial *upwqp1,
                __isl_take isl_union_pw_qpolynomial *upwqp2);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
                __isl_take isl_union_pw_qpolynomial *upwqp1,
                __isl_take isl_union_pw_qpolynomial *upwqp2);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
                __isl_take isl_union_pw_qpolynomial *upwqp1,
                __isl_take isl_union_pw_qpolynomial *upwqp2);
        __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
                __isl_take isl_pw_qpolynomial *pwqp,
                __isl_take isl_point *pnt);
        __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
                __isl_take isl_union_pw_qpolynomial *upwqp,
                __isl_take isl_point *pnt);
        __isl_give isl_set *isl_pw_qpolynomial_domain(
                __isl_take isl_pw_qpolynomial *pwqp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
                __isl_take isl_pw_qpolynomial *pwpq,
                __isl_take isl_set *set);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
                __isl_take isl_pw_qpolynomial *pwpq,
                __isl_take isl_set *set);
        __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
                __isl_take isl_union_pw_qpolynomial *upwqp);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
                __isl_take isl_union_pw_qpolynomial *upwpq,
                __isl_take isl_union_set *uset);
        __isl_give isl_union_pw_qpolynomial *
        isl_union_pw_qpolynomial_intersect_params(
                __isl_take isl_union_pw_qpolynomial *upwpq,
                __isl_take isl_set *set);
        __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
                __isl_take isl_qpolynomial *qp,
                __isl_take isl_space *model);
        __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
                __isl_take isl_qpolynomial *qp);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
                __isl_take isl_pw_qpolynomial *pwqp);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
                __isl_take isl_union_pw_qpolynomial *upwqp);
        __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
                __isl_take isl_qpolynomial *qp,
                __isl_take isl_set *context);
        __isl_give isl_qpolynomial *isl_qpolynomial_gist(
                __isl_take isl_qpolynomial *qp,
                __isl_take isl_set *context);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
                __isl_take isl_pw_qpolynomial *pwqp,
                __isl_take isl_set *context);
        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
                __isl_take isl_pw_qpolynomial *pwqp,
                __isl_take isl_set *context);
        __isl_give isl_union_pw_qpolynomial *
        isl_union_pw_qpolynomial_gist_params(
                __isl_take isl_union_pw_qpolynomial *upwqp,
                __isl_take isl_set *context);
        __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
                __isl_take isl_union_pw_qpolynomial *upwqp,
                __isl_take isl_union_set *context);

The gist operation applies the gist operation to each of the cells in the domain of the input piecewise quasipolynomial. The context is also exploited to simplify the quasipolynomials associated to each cell.

        __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
                __isl_take isl_pw_qpolynomial *pwqp, int sign);
        __isl_give isl_union_pw_qpolynomial *
        isl_union_pw_qpolynomial_to_polynomial(
                __isl_take isl_union_pw_qpolynomial *upwqp, int sign);

Approximate each quasipolynomial by a polynomial. If sign is positive, the polynomial will be an overapproximation. If sign is negative, it will be an underapproximation. If sign is zero, the approximation will lie somewhere in between.

Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions

A piecewise quasipolynomial reduction is a piecewise reduction (or fold) of quasipolynomials. In particular, the reduction can be maximum or a minimum. The objects are mainly used to represent the result of an upper or lower bound on a quasipolynomial over its domain, i.e., as the result of the following function.

        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
                __isl_take isl_pw_qpolynomial *pwqp,
                enum isl_fold type, int *tight);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
                __isl_take isl_union_pw_qpolynomial *upwqp,
                enum isl_fold type, int *tight);

The type argument may be either isl_fold_min or isl_fold_max. If tight is not NULL, then *tight is set to 1 is the returned bound is known be tight, i.e., for each value of the parameters there is at least one element in the domain that reaches the bound. If the domain of pwqp is not wrapping, then the bound is computed over all elements in that domain and the result has a purely parametric domain. If the domain of pwqp is wrapping, then the bound is computed over the range of the wrapped relation. The domain of the wrapped relation becomes the domain of the result.

A (piecewise) quasipolynomial reduction can be copied or freed using the following functions.

        __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
                __isl_keep isl_qpolynomial_fold *fold);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
                __isl_keep isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
                __isl_keep isl_union_pw_qpolynomial_fold *upwf);
        void isl_qpolynomial_fold_free(
                __isl_take isl_qpolynomial_fold *fold);
        void *isl_pw_qpolynomial_fold_free(
                __isl_take isl_pw_qpolynomial_fold *pwf);
        void isl_union_pw_qpolynomial_fold_free(
                __isl_take isl_union_pw_qpolynomial_fold *upwf);

Printing Piecewise Quasipolynomial Reductions

Piecewise quasipolynomial reductions can be printed using the following function.

        __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
                __isl_take isl_printer *p,
                __isl_keep isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
                __isl_take isl_printer *p,
                __isl_keep isl_union_pw_qpolynomial_fold *upwf);

For isl_printer_print_pw_qpolynomial_fold, output format of the printer needs to be set to either ISL_FORMAT_ISL or ISL_FORMAT_C. For isl_printer_print_union_pw_qpolynomial_fold, output format of the printer needs to be set to ISL_FORMAT_ISL. In case of printing in ISL_FORMAT_C, the user may want to set the names of all dimensions

        __isl_give isl_pw_qpolynomial_fold *
        isl_pw_qpolynomial_fold_set_dim_name(
                __isl_take isl_pw_qpolynomial_fold *pwf,
                enum isl_dim_type type, unsigned pos,
                const char *s);

Inspecting (Piecewise) Quasipolynomial Reductions

To iterate over all piecewise quasipolynomial reductions in a union piecewise quasipolynomial reduction, use the following function

        int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
                __isl_keep isl_union_pw_qpolynomial_fold *upwf,
                int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
                            void *user), void *user);

To iterate over the cells in a piecewise quasipolynomial reduction, use either of the following two functions

        int isl_pw_qpolynomial_fold_foreach_piece(
                __isl_keep isl_pw_qpolynomial_fold *pwf,
                int (*fn)(__isl_take isl_set *set,
                          __isl_take isl_qpolynomial_fold *fold,
                          void *user), void *user);
        int isl_pw_qpolynomial_fold_foreach_lifted_piece(
                __isl_keep isl_pw_qpolynomial_fold *pwf,
                int (*fn)(__isl_take isl_set *set,
                          __isl_take isl_qpolynomial_fold *fold,
                          void *user), void *user);

See Inspecting (Piecewise) Quasipolynomials for an explanation of the difference between these two functions.

To iterate over all quasipolynomials in a reduction, use

        int isl_qpolynomial_fold_foreach_qpolynomial(
                __isl_keep isl_qpolynomial_fold *fold,
                int (*fn)(__isl_take isl_qpolynomial *qp,
                          void *user), void *user);

Properties of Piecewise Quasipolynomial Reductions

To check whether two union piecewise quasipolynomial reductions are obviously equal, use

        int isl_union_pw_qpolynomial_fold_plain_is_equal(
                __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
                __isl_keep isl_union_pw_qpolynomial_fold *upwf2);

Operations on Piecewise Quasipolynomial Reductions

        __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
                __isl_take isl_qpolynomial_fold *fold, isl_int v);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
                __isl_take isl_pw_qpolynomial_fold *pwf1,
                __isl_take isl_pw_qpolynomial_fold *pwf2);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
                __isl_take isl_pw_qpolynomial_fold *pwf1,
                __isl_take isl_pw_qpolynomial_fold *pwf2);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
                __isl_take isl_union_pw_qpolynomial_fold *upwf1,
                __isl_take isl_union_pw_qpolynomial_fold *upwf2);
        __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
                __isl_take isl_pw_qpolynomial_fold *pwf,
                __isl_take isl_point *pnt);
        __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                __isl_take isl_point *pnt);
        __isl_give isl_pw_qpolynomial_fold *
        sl_pw_qpolynomial_fold_intersect_params(
                __isl_take isl_pw_qpolynomial_fold *pwf,
                __isl_take isl_set *set);
        __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
                __isl_take isl_union_pw_qpolynomial_fold *upwf);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                __isl_take isl_union_set *uset);
        __isl_give isl_union_pw_qpolynomial_fold *
        isl_union_pw_qpolynomial_fold_intersect_params(
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                __isl_take isl_set *set);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
                __isl_take isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
                __isl_take isl_pw_qpolynomial_fold *pwf);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
                __isl_take isl_union_pw_qpolynomial_fold *upwf);
        __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
                __isl_take isl_qpolynomial_fold *fold,
                __isl_take isl_set *context);
        __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
                __isl_take isl_qpolynomial_fold *fold,
                __isl_take isl_set *context);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
                __isl_take isl_pw_qpolynomial_fold *pwf,
                __isl_take isl_set *context);
        __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
                __isl_take isl_pw_qpolynomial_fold *pwf,
                __isl_take isl_set *context);
        __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                __isl_take isl_union_set *context);
        __isl_give isl_union_pw_qpolynomial_fold *
        isl_union_pw_qpolynomial_fold_gist_params(
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                __isl_take isl_set *context);

The gist operation applies the gist operation to each of the cells in the domain of the input piecewise quasipolynomial reduction. In future, the operation will also exploit the context to simplify the quasipolynomial reductions associated to each cell.

        __isl_give isl_pw_qpolynomial_fold *
        isl_set_apply_pw_qpolynomial_fold(
                __isl_take isl_set *set,
                __isl_take isl_pw_qpolynomial_fold *pwf,
                int *tight);
        __isl_give isl_pw_qpolynomial_fold *
        isl_map_apply_pw_qpolynomial_fold(
                __isl_take isl_map *map,
                __isl_take isl_pw_qpolynomial_fold *pwf,
                int *tight);
        __isl_give isl_union_pw_qpolynomial_fold *
        isl_union_set_apply_union_pw_qpolynomial_fold(
                __isl_take isl_union_set *uset,
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                int *tight);
        __isl_give isl_union_pw_qpolynomial_fold *
        isl_union_map_apply_union_pw_qpolynomial_fold(
                __isl_take isl_union_map *umap,
                __isl_take isl_union_pw_qpolynomial_fold *upwf,
                int *tight);

The functions taking a map compose the given map with the given piecewise quasipolynomial reduction. That is, compute a bound (of the same type as pwf or upwf itself) over all elements in the intersection of the range of the map and the domain of the piecewise quasipolynomial reduction as a function of an element in the domain of the map. The functions taking a set compute a bound over all elements in the intersection of the set and the domain of the piecewise quasipolynomial reduction.

Dependence Analysis

isl contains specialized functionality for performing array dataflow analysis. That is, given a sink access relation and a collection of possible source access relations, isl can compute relations that describe for each iteration of the sink access, which iteration of which of the source access relations was the last to access the same data element before the given iteration of the sink access. The resulting dependence relations map source iterations to the corresponding sink iterations. To compute standard flow dependences, the sink should be a read, while the sources should be writes. If any of the source accesses are marked as being may accesses, then there will be a dependence from the last must access and from any may access that follows this last must access. In particular, if all sources are may accesses, then memory based dependence analysis is performed. If, on the other hand, all sources are must accesses, then value based dependence analysis is performed.

        #include <isl/flow.h>
        typedef int (*isl_access_level_before)(void *first, void *second);
        __isl_give isl_access_info *isl_access_info_alloc(
                __isl_take isl_map *sink,
                void *sink_user, isl_access_level_before fn,
                int max_source);
        __isl_give isl_access_info *isl_access_info_add_source(
                __isl_take isl_access_info *acc,
                __isl_take isl_map *source, int must,
                void *source_user);
        void isl_access_info_free(__isl_take isl_access_info *acc);
        __isl_give isl_flow *isl_access_info_compute_flow(
                __isl_take isl_access_info *acc);
        int isl_flow_foreach(__isl_keep isl_flow *deps,
                int (*fn)(__isl_take isl_map *dep, int must,
                          void *dep_user, void *user),
                void *user);
        __isl_give isl_map *isl_flow_get_no_source(
                __isl_keep isl_flow *deps, int must);
        void isl_flow_free(__isl_take isl_flow *deps);

The function isl_access_info_compute_flow performs the actual dependence analysis. The other functions are used to construct the input for this function or to read off the output.

The input is collected in an isl_access_info, which can be created through a call to isl_access_info_alloc. The arguments to this functions are the sink access relation sink, a token sink_user used to identify the sink access to the user, a callback function for specifying the relative order of source and sink accesses, and the number of source access relations that will be added. The callback function has type int (*)(void *first, void *second). The function is called with two user supplied tokens identifying either a source or the sink and it should return the shared nesting level and the relative order of the two accesses. In particular, let n be the number of loops shared by the two accesses. If first precedes second textually, then the function should return 2 * n + 1; otherwise, it should return 2 * n. The sources can be added to the isl_access_info by performing (at most) max_source calls to isl_access_info_add_source. must indicates whether the source is a must access or a may access. Note that a multi-valued access relation should only be marked must if every iteration in the domain of the relation accesses all elements in its image. The source_user token is again used to identify the source access. The range of the source access relation source should have the same dimension as the range of the sink access relation. The isl_access_info_free function should usually not be called explicitly, because it is called implicitly by isl_access_info_compute_flow.

The result of the dependence analysis is collected in an isl_flow. There may be elements of the sink access for which no preceding source access could be found or for which all preceding sources are may accesses. The relations containing these elements can be obtained through calls to isl_flow_get_no_source, the first with must set and the second with must unset. In the case of standard flow dependence analysis, with the sink a read and the sources must writes, the first relation corresponds to the reads from uninitialized array elements and the second relation is empty. The actual flow dependences can be extracted using isl_flow_foreach. This function will call the user-specified callback function fn for each non-empty dependence between a source and the sink. The callback function is called with four arguments, the actual flow dependence relation mapping source iterations to sink iterations, a boolean that indicates whether it is a must or may dependence, a token identifying the source and an additional void * with value equal to the third argument of the isl_flow_foreach call. A dependence is marked must if it originates from a must source and if it is not followed by any may sources.

After finishing with an isl_flow, the user should call isl_flow_free to free all associated memory.

A higher-level interface to dependence analysis is provided by the following function.

        #include <isl/flow.h>
        int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
                __isl_take isl_union_map *must_source,
                __isl_take isl_union_map *may_source,
                __isl_take isl_union_map *schedule,
                __isl_give isl_union_map **must_dep,
                __isl_give isl_union_map **may_dep,
                __isl_give isl_union_map **must_no_source,
                __isl_give isl_union_map **may_no_source);

The arrays are identified by the tuple names of the ranges of the accesses. The iteration domains by the tuple names of the domains of the accesses and of the schedule. The relative order of the iteration domains is given by the schedule. The relations returned through must_no_source and may_no_source are subsets of sink. Any of must_dep, may_dep, must_no_source or may_no_source may be NULL, but a NULL value for any of the other arguments is treated as an error.

Scheduling

The functionality described in this section is fairly new and may be subject to change.

The following function can be used to compute a schedule for a union of domains. By default, the algorithm used to construct the schedule is similar to that of Pluto. Alternatively, Feautrier's multi-dimensional scheduling algorithm can be selected. The generated schedule respects all validity dependences. That is, all dependence distances over these dependences in the scheduled space are lexicographically positive. The default algorithm tries to minimize the dependence distances over proximity dependences. Moreover, it tries to obtain sequences (bands) of schedule dimensions for groups of domains where the dependence distances have only non-negative values. When using Feautrier's algorithm, the proximity dependence distances are only minimized during the extension to a full-dimensional schedule.

        #include <isl/schedule.h>
        __isl_give isl_schedule *isl_union_set_compute_schedule(
                __isl_take isl_union_set *domain,
                __isl_take isl_union_map *validity,
                __isl_take isl_union_map *proximity);
        void *isl_schedule_free(__isl_take isl_schedule *sched);

A mapping from the domains to the scheduled space can be obtained from an isl_schedule using the following function.

        __isl_give isl_union_map *isl_schedule_get_map(
                __isl_keep isl_schedule *sched);

A representation of the schedule can be printed using


        __isl_give isl_printer *isl_printer_print_schedule(
                __isl_take isl_printer *p,
                __isl_keep isl_schedule *schedule);

A representation of the schedule as a forest of bands can be obtained using the following function.

        __isl_give isl_band_list *isl_schedule_get_band_forest(
                __isl_keep isl_schedule *schedule);

The list can be manipulated as explained in Lists. The bands inside the list can be copied and freed using the following functions.

        #include <isl/band.h>
        __isl_give isl_band *isl_band_copy(
                __isl_keep isl_band *band);
        void *isl_band_free(__isl_take isl_band *band);

Each band contains zero or more scheduling dimensions. These are referred to as the members of the band. The section of the schedule that corresponds to the band is referred to as the partial schedule of the band. For those nodes that participate in a band, the outer scheduling dimensions form the prefix schedule, while the inner scheduling dimensions form the suffix schedule. That is, if we take a cut of the band forest, then the union of the concatenations of the prefix, partial and suffix schedules of each band in the cut is equal to the entire schedule (modulo some possible padding at the end with zero scheduling dimensions). The properties of a band can be inspected using the following functions.

        #include <isl/band.h>
        isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
        int isl_band_has_children(__isl_keep isl_band *band);
        __isl_give isl_band_list *isl_band_get_children(
                __isl_keep isl_band *band);
        __isl_give isl_union_map *isl_band_get_prefix_schedule(
                __isl_keep isl_band *band);
        __isl_give isl_union_map *isl_band_get_partial_schedule(
                __isl_keep isl_band *band);
        __isl_give isl_union_map *isl_band_get_suffix_schedule(
                __isl_keep isl_band *band);
        int isl_band_n_member(__isl_keep isl_band *band);
        int isl_band_member_is_zero_distance(
                __isl_keep isl_band *band, int pos);

Note that a scheduling dimension is considered to be ``zero distance'' if it does not carry any proximity dependences within its band. That is, if the dependence distances of the proximity dependences are all zero in that direction (for fixed iterations of outer bands).

A representation of the band can be printed using

        #include <isl/band.h>
        __isl_give isl_printer *isl_printer_print_band(
                __isl_take isl_printer *p,
                __isl_keep isl_band *band);

Options

        #include <isl/schedule.h>
        int isl_options_set_schedule_max_constant_term(
                isl_ctx *ctx, int val);
        int isl_options_get_schedule_max_constant_term(
                isl_ctx *ctx);
        int isl_options_set_schedule_maximize_band_depth(
                isl_ctx *ctx, int val);
        int isl_options_get_schedule_maximize_band_depth(
                isl_ctx *ctx);
        int isl_options_set_schedule_outer_zero_distance(
                isl_ctx *ctx, int val);
        int isl_options_get_schedule_outer_zero_distance(
                isl_ctx *ctx);
        int isl_options_set_schedule_split_parallel(
                isl_ctx *ctx, int val);
        int isl_options_get_schedule_split_parallel(
                isl_ctx *ctx);
        int isl_options_set_schedule_algorithm(
                isl_ctx *ctx, int val);
        int isl_options_get_schedule_algorithm(
                isl_ctx *ctx);

Parametric Vertex Enumeration

The parametric vertex enumeration described in this section is mainly intended to be used internally and by the barvinok library.

        #include <isl/vertices.h>
        __isl_give isl_vertices *isl_basic_set_compute_vertices(
                __isl_keep isl_basic_set *bset);

The function isl_basic_set_compute_vertices performs the actual computation of the parametric vertices and the chamber decomposition and store the result in an isl_vertices object. This information can be queried by either iterating over all the vertices or iterating over all the chambers or cells and then iterating over all vertices that are active on the chamber.

        int isl_vertices_foreach_vertex(
                __isl_keep isl_vertices *vertices,
                int (*fn)(__isl_take isl_vertex *vertex, void *user),
                void *user);
        int isl_vertices_foreach_cell(
                __isl_keep isl_vertices *vertices,
                int (*fn)(__isl_take isl_cell *cell, void *user),
                void *user);
        int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
                int (*fn)(__isl_take isl_vertex *vertex, void *user),
                void *user);

Other operations that can be performed on an isl_vertices object are the following.

        isl_ctx *isl_vertices_get_ctx(
                __isl_keep isl_vertices *vertices);
        int isl_vertices_get_n_vertices(
                __isl_keep isl_vertices *vertices);
        void isl_vertices_free(__isl_take isl_vertices *vertices);

Vertices can be inspected and destroyed using the following functions.

        isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
        int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
        __isl_give isl_basic_set *isl_vertex_get_domain(
                __isl_keep isl_vertex *vertex);
        __isl_give isl_basic_set *isl_vertex_get_expr(
                __isl_keep isl_vertex *vertex);
        void isl_vertex_free(__isl_take isl_vertex *vertex);

isl_vertex_get_expr returns a singleton parametric set describing the vertex, while isl_vertex_get_domain returns the activity domain of the vertex. Note that isl_vertex_get_domain and isl_vertex_get_expr return rational basic sets, so they should mainly be used for inspection and should not be mixed with integer sets.

Chambers can be inspected and destroyed using the following functions.

        isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
        __isl_give isl_basic_set *isl_cell_get_domain(
                __isl_keep isl_cell *cell);
        void isl_cell_free(__isl_take isl_cell *cell);


Applications

Although isl is mainly meant to be used as a library, it also contains some basic applications that use some of the functionality of isl. The input may be specified in either the isl format or the PolyLib format.

isl_polyhedron_sample

isl_polyhedron_sample takes a polyhedron as input and prints an integer element of the polyhedron, if there is any. The first column in the output is the denominator and is always equal to 1. If the polyhedron contains no integer points, then a vector of length zero is printed.

isl_pip

isl_pip takes the same input as the example program from the piplib distribution, i.e., a set of constraints on the parameters, a line containing only -1 and finally a set of constraints on a parametric polyhedron. The coefficients of the parameters appear in the last columns (but before the final constant column). The output is the lexicographic minimum of the parametric polyhedron. As isl currently does not have its own output format, the output is just a dump of the internal state.

isl_polyhedron_minimize

isl_polyhedron_minimize computes the minimum of some linear or affine objective function over the integer points in a polyhedron. If an affine objective function is given, then the constant should appear in the last column.

isl_polytope_scan

Given a polytope, isl_polytope_scan prints all integer points in the polytope.